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Abstract

Results Based Agri-Environmental Payment Schemes are powerful tools for
protecting HNV farmland in Europe. The landscape present on the Aran Islandsis
one mosaiced by species-rich semi-natural grasslands and exposed limestone
bedrock. The presence of rare flora speciesis owed to long-standing, traditional,
low-intensity grazing practices. Caomhnt Arann monitors the farms of those who
have enrolled in the program and provides a grade 1-5 ultimately depending on
grazing level, presence of indicator species, adequate water provisions for cattle, and
scrub maintenance. Unmanned Aeria Vehicle (UAV) acquired multispectral data
can aid in the classification of these farmlands and limit the expenditure of time,
money, and resources by Caomhni Arann. Supervised classification by Random
Forest Models was used to predict the grazing score of input fields with the highest
overall accuracy by asingle model of (54.78 %). This accuracy was achieved by the
Random Forest Model which used the first 10 dimensions from a Principal
Component Analysis as predictors. This model also achieved the highest balanced
accuracy of any individual grazing class (class 5 — 84.01%). The variables which
underwent the PCA and that built the other random forest models were various zonal
statistics of the individual bands from the multispectral imagery, Normalized
Difference Vegetation Index (NDVI) and NDV I derived analytical rasters, and a
Digital Elevation Model (DEM). This research may have not successfully proven the
full employability of aparticular classification model asit pertains to the
conservation interests of Caomhnt Arann and the Aran Islands, but thereis promise
in the ability to classify specific grazing scores. Scores 2 and 5 obtained the highest
Balanced Accuracies across al 6 Random Forest Models. The results show that a
Random Forest Model could be used by Caomhnti Arann in their future research if
the collinearity of input datais corrected by performing a Principal Component
Analysis, and input datais processed to limit the errors inherent with UAV acquired
data.

Keywords: Multi-Spectral Imagery; Semi-Natural Grasslands;
Vegetation Index; Agri-Environmental Schemes; Random
Forest Classification



Abstract

Results Based Agri-Environmental Payment Schemes jsou u¢innymi néstroji
pro ochranu zemédélské pldy s vysokou pfirodni hodnotou v Evropé. Krajina
Aranskych ostrovi je tvofena mozaikou druhové bohatych polopfirozenych pastvin a
odkrytych vapencovych skalnich Gtvar(i. Dlouhodobé, tradi¢ni pastevni postupy s
nizkou intenzitou uplatfiované v této krajiné vyustily v pfitomnost vzacnych druht
rostlin. Projekt Caomhnt Arann monitoruje farmy zapojené do programu av
zavidosti naintenzité pastvy, pfitomnosti indikacnich druh(, adekvatnich zasobach
vody pro dobytek a udrzbé kfovin jim pridéluje zndmku 1-5 (tzv. pastevni skore).
Multispektralni data ziskana bezpilotnimi leteckymi systémy (UAV) mohou pomoci
pfi klasifikaci téchto zemédélskych oblasti a omezit tak ¢asové, financni a jiné
vydaje projektu Caomhnt Arann. V této préci bylak predikci pastevniho skére
pouzita Fizena klasifikace UAV snimkll metodou Random Forest. Nejvyssi celkové
presnosti (54,78 %) bylo dosazeno v modelu, v némz bylo jako prediktor(i pouZito
prvnich 10 hlavnich komponent vypoctenych ze vSech dostupnych vstupnich vrstev.
Tento model take dosahl nejvyssi vyvazené presnosti v ramci jednotlivych tfid
pastvy (tfida 5 — 84,01 %). Proménng, ktere slouzily jako vstupy do analyzy hlavnich
komponent i jako samostatné prediktory v jednotlivych modelech, byly riizné
zondni statistiky jednotlivych pasem z multispektrd niho snimku, normalizovany
vegetacni index (NDVI), analyticke rastry odvozené od NDVI a digitalni model
nadmorske vysky (DEM). Tato prace sice neprokazala plnou pouZzitelnost
konkrétniho klasifikaéniho modelu pro Gcely ochrany pFirody Aranskych ostrovll v
ramci projektu Caomhni Arann, naznaduje viak, Ze ur€ita konkrétni pastevni skore
klasifikovat |ze. Skore 2 a5 ziskaly nejvyssi vyvazenou presnost (balanced accuracy)
ze viech 6 modell. Vysledky ukazuji, Ze Random Forest modely by mohly byt
pouzity v dal$im vyzkumu v rdmci projektu Caomhnt Arann, za piedpokladu
vyfeSeni kolinearity vstupnich dat provedenim analyzy hlavnich komponent a

pfedzpracovani vstupnich dat z UAV tak, aby byly opraveny chyby v téchto datech.
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Chapter 1

I ntroduction
11 L anguage Note

Astheidands are a part of the Gaeltacht, this thesis will attempt to best retain
the Irish spelling of place names, where it does not interfere with the ability of
English Speakersto read along. InisMeain and Inis Oirr will retain their Irish
spelling, but the largest island and that of our subject site, Arainn will be referred to
as Inis Mér to not confuse English speakers with the name for the whole island chain
“The Aran Islands”. Thisis done out of respect for the community and individuals
who made this effort possible. As Tim Robinson (2008) spiritually putsit in his book
“Stones of Aran: Pilgrimage”, “since the islands are a principal part of the Irish
language’s last precarious foothold on the world” an ethical duty is placed upon
outsiders to respect the culture and traditions of the place they wish to observe

science.
1.2 Introduction

Caomhnt Arann is a project under the EU’s European Innovation Partnership
for Agricultural productivity and Sustainability (EIP-AGRI) funded by the
Department of Agriculture, Food and the Marine (DAFM). The project monitors
2,307 hectares of grazing land across al three islands within the Aran Islands
(Caomhnt Arann 2020b). See Appendix A for the location of the Arann Islands and
the subject site.

The project seeks to encourage farmers to maintain traditional, low- intensity
grazing practicesin an effort to conserve priority habitat. Modern socio-natural
relations on the Aran Islands and The Burren have trended towards two farming
outcomes: intensification or abandonment (McGurn 2017, McGurn 2020b). Factors
of these relations include “low farm income, small and fragmented holdings, low
productivity land, and high labor intensity of optimal conservation methods” (EIP-
AGRI 2019). Farmers have been either abandoning their agricultural practices for
jobsin the tourism sector and jobs off-island, or intensifying practices to increase
income (Rensburg 2009). Both poles on this spectrum contribute to a decrease in

biodiversity, and degradation of the natural heritage which drives the tourism sector.
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Caomhntl Arann is a successor to the AranL | FE Project, which was funded
by the EUs LIFE+ program and ran from 2014 to 2018. The project worked with
farmers to assess whether they would be interested in participating in aresults based
payment scheme, and if such would positively contribute to species rich grassland
habitats found on the islands. Aran Island farmers were exposed to the success of the
BurrenLIFE project in the Burren, County Clare. The Burren is an eco-region
hosting similar species rich grasslands and exposed limestone pavement, with a
history of low-intensity grazing (McGurn 2020). BurrenL|FE would become a
model for farmers on the Aran Islands looking to protect their natural heritage and

economic livelihoods.

Caomhnti Arann devel oped a simple scoring system that grades for the
quality of grassland habitat driven by grazing levels. Fields are scored one through
five, with ascore of five receiving the highest payments. Payments are also provided
for active improvement measures of scrub control and installation of adequate water
provisions. All three factors are key to the production of species-rich grasslands.

The first requirement for afield’s eigibility within Caomhn( Arann is that it must be
grazed.

Due to the traveling limitations inherent with an island chain, it isin the interest of
Caomhnti Arann to be able to score fields with as little ground-truthing as possible.
An informational campaign was run during the tenure of AranLIFE, and now
Caomhn( Arann, to make farmers knowledgeable on desirable grazing techniques
and corrective action. A goal of this campaign isto enable farmers to grade farms on
their own. In 2020, 25 farmers were randomly selected to grade their own fields
using resources provided by Caomhnt Arann (Browne 2020). While additional
training has been delayed due to travel restrictions brought upon by the Covid-19
pandemic, there exists a strong correl ation between the scores issued by farmers and
Caomhnt Arann. A combination of self-assessment done by farmers and verification
by remote sensing will lessen project expenses and put those funds back into the
pockets of farmers. The data coverage included in thisthesisis limited to three small
adjacent siteson Inis Mér, but it is assumed that the similar landscape features found
on InisMeain and Inis Oirr will alow for this research to be applicable on those

islands aswell.
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Chapter 2

Objectives

The goal of thisresearch isto validate the ability to assess habitat quality in
semi-natural grasslands of the Aran Islands, Ireland using multi-spectral imagery. If
results find that a statistical relationship exists between habitat quality (Asdefined in
the “Grazing Scoring System” of the Agri-Env Scheme Caomhn(i Arann) and one or
more spatial variables, then it can help identify the most relevant and sufficient
variables for predicting priority habitat in pastoral semi-natural grasslandsin
Northern Europe, and particularly the Aran Islands, Ireland. Thiswill help the
plausibility assessment of agri-environmental schemes for these landscapes, assist
existing local schemesto expand their project scale and find new participants, and

streamline operations and limit input expenses.
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Chapter 3

Literature Review

3.1 Caomhni Arann Operations

The current five-grade scoring system is simpler than the previous system used
by AranLIFE, the ten-grade system employed by the successor to BurrenLIFE, The
Burren Programme, and other Results Based Agri-Environmental Payments (RBAPS)
(Dunford 2020) (McGurn 2020). It is not a continuous scale, but rather ordinally
categorizes different fields. Considered criteriawhen determining afield’s score are
adequate water supply, controlled scrub or bracken, and most importantly it isthe flora
biodiversity and existence of key indicator species. Parcels are graded as the unitsin
which they are defined by the Land Parcel Identification System (LPIS) unless further
subdivided to correspond with the obvious delineation between grazing scores. If afield
IS >30% semi-improved/improved land then the two land uses will be scored separately
(Caomhnu Arann 2018).

Table 1. List of Indicator Species (Caomhnui Arann)
Source: www.caomhnuaranneip.ie “Field Scoring System for Assessing Habitat Condition™

Bird’s- Spring Harebell Bloody | Pyramidal | Common | Common
foot Gentian Craneshill Orchid Milkwort | Spotted
Trefoil Orchid
Early wild Eyebright | Devil Bit Lady’s Yellow Kidney
Purple Thyme Scabious | Bedstraw Rattle Vetch
Orchid
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Figures 1-2. Examples of grazing score 1 (Caomhni Arann)
Source: www.caomhnuaranneip.ie “Field Scoring System for Assessing Habitat Condition™

The lowest score of 1 isgivento fieldsthat are ungrazed. These are

predominately located closer to the shore or along roads and are defined by limestone

crags, staging yards, and seldomly tilled land. Most fields receiving a score of 1 will

never be eligible for RBAP payments, but where possible, an extensive amount of

manual scrub removal will have to take place alongside the reintroduction of grazing and

proper provisions of water supply for cattle.

Figures 3-6. Examples of grazing score 2 (Caomhnt Arann)
Source: www.caomhnuaranneip.ie “Field Scoring System for
Assessing Habitat Condition™

For scores 2-5, field
inspections consider the
prevalence of indicator species
present in 10 random 1m?
quadrants and scrub surrounding
thefields’ perimeter. Fields
scored with a 2 characteristically
differ from fields scored 3-5 by
evidence of soil improvements
and summer grazing. Inthe
subject site of thisthesison Inis
Mor, these fields are
predominantly located along the

low laying plain sloping towards the northern shore of theisland. They are also in closer

proximity to the road and not categorized as winterage (Dunford 2020).

Page 6



Figures 7-10. Examples of grazing score 3 (Caomhnt Arann)
Source: www.caomhnuaranneip.ie “Field Scoring System for
Assessing Habitat Condition”

The largest difference between fields scored 4 and 5 is the percentage of scrub
cover. A field scored 5 is allowed to 20% scrub coverage, “as long as it is contained to
the edges”. Both 4s and 5s should display a high number of indicator species, but there
may be trace evidence of dight under grazing on a4. A field with ascore of 3 is grazed,
but possesses alot of issues not present in a4, but is certainly not improved and as green
as afield earning a score of 2. These issues include bare sand caused by overgrazing in
Machair habitat or dominance by Molinia. The collection of fields scored with a3
varies in character much more than the other score groups. See Table 2 for a breakdown
of field scores within the subject site of thisthesis.

F

Figure 11. Examples of Molinina Figure 12. Examples of Damaged
Issuein grazing score 3 (Caomhnu Machair in grazing score 3

Arann) (Caomhnu Arann)
Source: www.caomhnuaranneip.ie Source: www.caomhnuaranneip.ie
“Field Scoring System for “Field Scoring System for

Assessing Habitat Condition™ Assessing Habitat Condition™
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Figures 13-16. amles of grazing score 4 (Caomhnt Arann)
Source: www.caomhnuaranneip.ie “Field Scoring System for
Assessing Habitat Condition™

Figures 17-20. Expl% of gri ng score 5 (aomhnl] Arann)
Source: www.caomhnuaranneip.ie “Field Scoring System for
Assessing Habitat Condition™

Table 2. Summary of fields used in final data frame sorted by grazing score
Grazing Scores in Subject Site
Grazing Scorc_ - 2 3
No. of Farms a2 91 47 42 85
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Caomhnt Arann is currently undertaking a project of their own to assess the
use of UAVsto score habitat quality. Thisthesisis done independently from
Caomhnt Arann, but with overlapping interests and goals. All remote sensing data
and on ground data used in the subsequent data analysis was provided to the author
by Caomhnt Arann by their own generosity. The author is not aware of Caomhni
Arann’s analytical approach and has only been provided data and general

information on the organization.

Although the beauty of the islands’ landscape comes from its observantly mosaic
structure (McGurn 2020), from a classification perspectiveit islimited. Present on
theisland is an abundance of limestone, whether in the form of field walls or natural
dlabs, semi-natural grasslands, scrub, gravel or bituminous concrete drives, and
structures. The nature of the conservation scheme makes this research most
concerned with vegetated land cover and limestone slabs that exist within grazed
areas. These vegetated habitats may be diverse, but this research was not concerned

with classifying individual communities or species.

The agricultural practice of winterageis an efficient tradition that has likely
been in place since the arrival of neolithic pastoralism(O’Rourke 2005) (Dunford
2020)(McGurn 2020). Its efficiency can only be complemented by a conservation
scheme that employs the same efficiency. Caomhnu Arann is ateam of three
scientists, Scientific and Technical Officer: Amanda Browne, Financial and
Administration Officer: Grainne Ni Chonghaile, and Project Manager: Patrick
McGurn, responsible for 125 scattered farm holdings across three separate islands
(Caomhnt Arann 2020). It isimperative that they are able to limit expenses and time
to secure the financia health of the project and its participants. If on-sitefield
assessment by Caomhn( Arann staff was solely relied upon to provide Grazing
Scores, then the project must consider expenses such as overnight accommodation,
extensive labor, and nautical transportation fees. To combat these high expenditures
of time, money, and resources, Caomhnut Arann is pursuing farmer self-assessment
asthe next step in RBAS (Browne NRN EIP-AGRI BLOG). Futureresearchis
required on the success of a hybrid model where multispectral imagery is used to

cross-reference self-assessment by farmers.
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3.2 Remote Sensing

GeoAerospace Ltd. was employed by Caomhnti Arann in 2019 to classify
fields into grazing scores using imagery from the Sentinel 1 & 2 satellites. The
grazing scores given to GeoAerospace Ltd. by Caomhn( Arann were collected in
2016 and thus, satellite imagery from the same year was used in the classification
attempts. During preliminary analysis, GeoAerospace Ltd. observed the spectral
response variation within each score class to construct an inconclusive classification
model and concluded that any machine learning classification attempts would be
would not be sufficient if built using the spatial resolution of the Sentinel 2 imagery
(10m?) (GeoAerospace 2019).

The recognition of the potential of UAV remote sensing in the field of habitat
modeling has been growing in the last 15 years (Lopez 2019). Very oftenisland
which is deemed worthy of conservation in remote periphera areas, with low funds
and resources. UAV remote sensing can save laborious hours of field assessment by
small teams in expansive landscapes (Caomhnt Arann 2019). UAVs are being
integrated with Real-time Kinematic Positioning technology, which enables
surveyorsto avoid the preliminary setup of site targets, saving even moretime. The
exact model used, the DJI Phantom 4 Multispectral RTK, can achieve a horizontal
accuracy of 1 cm + 1 ppm, and avertical accuracy of 2 cm + 1 ppm (Taddia 2019)
(Feng 2008). Multispectral datais valuable in assessing grassland habitat for its
ability to construct Normalized Difference Vegetation Index (NDVI) (Strong 2017),
and the sheer amount of extra data (Komarek 2018). While thisthesis did not
include the construction of a normalized Digital Surface Model, the results did
compare with that of (Komérek 2018) in that classification accuracy was highest
when the model was built using different data types (topography and spectral data).

NDVIls are constructed on the fact that vegetation absorbs light within the
visible light spectrum for photosynthesis and reflects back infra-red light (Strong
2017). Unlike Strong, this thesis was not attempting to specifically classify
vegetation at acommunity level, but fit a classification system to the Caomhnu
Arann Grazing Score System. Strong’s research seeks to test the potential of an
ENDV I vegetation index to distinguish between different grassland habitats. This
index was developed by LDP LLC, Carlstadt, NJ, USA and utilizes the Green and
Blue Bands alongside the NIR band (Strong 2017). The equation for thisindex is



Page 11

((NIR + Green) — (2 * Blue)) / (NIR + Green) + (2 * Blue)) (LDP LLC). This Index
builds upon the premise that the role of blue light in photosynthesis will “increase the
dynamic range of the index values” (Burnside 2020). This approach was not utilized
in this research due to the questionable flaws discovered within the values of the blue
band. Theseissueswill be described in the Results and Discussions chapter of this
thesis. The multispectral data provided for this research did include captured Red-
Edge values. There has been suggestion that the characteristics of this spectral band
may be beneficial to classifying open landscape vegetation (Strong 2017) (Schuster
2012). While no vegetation index was built using this band, zonal statistics of this

band were used in the Random Forest classification all the same as the other 4 bands.

3.3 Random Forests M odels

Most Random Forest Classification techniques seek to classify the land cover
of individual pixels such as (Svoboda 2022). While this research did experiment
with unsupervised classification techniques of the NDV I, the resulting raster was
calculated for its zonal statistics per field to be used in as predictorsin a Random
Forest Moddl.

This research would like to agree with Zhao in that elevation is the most
critical feature for the classification of grasslands (Zhao 2022). However, elevation
was not included in any Random Forest Model constructed for this research due to
the inability to confirm the continuity of avertical datum across the three imagery
sites. To include some bit of topographic datainto the classification attempt, slope
was calculated as a method of normalizing the surface elevations.

The number of trees (ntree) parameter within the random forest algorithm
was set to 1000 across all models. Xu scaled this parameter to the “relatively high
value of 500 until the smallest OOB error was achieved (Xu 2019). This method
was also applied with thisresearch. The mtry parameter was set to default (square
root of number of predictors) as recommended by the ranger packet documentation
(Wright 2021).
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Chapter 4
Characteristics of the Subject Site

The Aran Islands are a chain of three islands |ocated off the west coast of
Ireland. Across Galway Bay to the NE is County Galway, and directly east is located
The Burren in County Clare. The threeislands named Inis Oirr, Inis Meéin, and our
subject site Inis M6r, are defined by rare Karst limestone landscapes and orchid rich
calcareous semi-natural grasslands (Colgan 1893). The islands also host the
southerly limit of the geographic range of the rare machair habitat in Europe (Bassett
1985). These habitat types have developed a dependency on agricultural
management. Threatened by agricultural polarization (abandonment ----
intensification), conservationists in The Burren and The Aran Islands have opted for
asubsidy scheme that provides farmers with payment for corrective action and
habitat maintenance. The efforts have changed faces through different EU subsidy
programs, but their purposes have always remained the same.

The limestone geology was formed during the Carboniferous, on the
bottom of the tropical sea (Self 1998). The islands share the same geological history
as the Burren, which Drew titles “the finest example of akarstic landscapein
Ireland” (Drew 1997). Despiteits rugged exterior, the IsSlands are very much so an
agrarian landscape. Domesticated grazing animals have been present since
expansive clearing occurred in the Mesolithic-Neolithic transition (Molloy 2004).
Since this time, the prospering grasslands and flora species devel oped a strong
dependency on constant grazing levels.
Many of these rarities and beauties
present in the cultural landscape have
made the islands a target of

conservationists and tourists.

Figure 21. SE corner of InisM¢ér, located off
subject site
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Chapter 5

M ethodology

51 Data

Caomhnti Arann employed the services of GeoAerospace Ltd. to conduct a
remote survey of three adjacent siteson InisMor. The sites were flown on June 28"
& 29", 2021 with aDJl Phantom 4 Multispectral UAV and output rasters were ortho
rectified by abuilt in RTK GPS. The DJI Phantom 4 Multispectral UAV utilizes
photogrammetry to map the horizontal and vertical coordinates, and produce the
output products (point cloud, DEM, and 5 band Orthomosaic). The band names and
their spectral scale acquired by this drone survey are as follows: Blue (B): 450 nm +
16 nm; Green (G): 560 nm £ 16 nm; Red (R): 650 nm = 16 nm; Red edge (RE): 730
nm = 16 nm; Near-infrared (NIR): 840 nm £ 26 nm. The drone was flown at 120m
above ground level for each flight. The vertical datum references the OSGM 1.5
Model and elevation values are in ellipsoidal height (Foyle 2022).

The three sites known colloquialy asMor 1,2, & 3 were flown at separate
times across June 28" and 29", and do not geographically overlap at al. The sites
are numbered in counterclockwise order starting from the small NW site. The order
in which the editing of the shapefile was conducted corresponding to their respective
sizes: Mér 2, Mor 3, and finally Mor 1. Editing procedures were kept constant
across the entirety of the data. Appendix B shows the geographic limits of al
provided raster and vector data.

Preparation for data analysis began by creating analytical rasters and editing
the provided shapefile. GeoAerospace provided the orthorectified 5 band imagery
and aDEM, and Caomhnti Arann provided the field data shapefile hereon titled
“LPIS Field Data”. The LPIS Field Data shapefile was edited so that polygons were
topologically flush with neighbors where true and were most accurately representing

the field walls visualized in the remote sensing imagery.
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5.2  Remote Sensing Data Preparation

Various tools were needed to acquire the desired input predictors and manage
the data to be processable. Every individual band was extracted as alyr. file and then
exported as geotiffs. An issue was noticed early that the areas surrounding the extent
of raster data which should be “noData” were in fact valuing as 0. This was handled
by using a Con expression in the raster calculator with al five individual bands as
input rasters. The resulting raster was one which valued all pixels possessing avalue
of 0indl fiveindividual bands from the multispectral imagery as 1. Upon this
processing, it was discovered that .002 % of the data areawas in fact containing no
datafrom the droneflight. Thisisaresult of alack of ambient light penetrating
shadowed areas on the drone flight path, and thus the drone camera detected no light
coming back. The uncovered area was considered insignificant due to small

coverage.

The output raster from the Con expression was then used as the conditional
raster in a SetNull expression with each of the five multispectral bands being used as
constants. Thisresulted in five individual single band rasters representing the five
gpectral ranges, valuing as NoData instead of 0 surrounding the data extents. The
fiveindividual bands were combined back together using the “Image Analysis-
Composite Bands” feature in ArcMap. The RGB imagery now valued all pixels
outside the true data extent as NoData. This data management was necessary in
order to accurately calculate an NDVI. The DEM provided by GeoA erospace was
already satisfactory in thisregard. A raster representing slope in degree was created
from the DEM.

The NDVI was created with the following equation (Red-NIR/Red+NIR)
(Sun 2014). The Red Band was the third band provided by GeoAerospace with a
spectral range of 650 nm £ 16 nm, and the Near-Infrared Band was the fifth band
with aresolution of 840 nm + 26 nm. AN NDVI raster was provided for thisthesis
research by GeoAerospace but was not used in further analysis. It was however
compared to the NDVI created as a part of this research. Differencesin the two data

sets were negligible to none.

To capture the distribution patterns of vegetated characteristics inherent with

each of the grazing scores, further analytical rasters derived from the NDVI were
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created. The NDVI was used as the input raster in 3x3 rectangular focal statistics.
This operation was run for the following statistical types resulting in four new
rasters. Mean, Standard Deviation, Percentile, and Range. The NDVI was also used
asthe input raster for operating a smoothing low pass filter and edge-enhancing high

pass filter.

5.3 LPISDataPreparation

The LPISisthe cadaster database used by DAFM to manage payments to
their area-based payment schemes. The current system is 25 years old and the newly
introduced system created in 2019 has not been mainstreamed in the Aran Islands’
County Galway (DAFM) (LPIS 2019). This may explain to the crudeness of the
geographic accuracy and topological inconsistency in the provided shapefile.
Appendix C shows the manual transformation of the LPIS Field Data polygons done
for thisthesis. The goal for this editing procedure was that the limits of each
polygon were placed in the center of the field wall they corresponded to, that
adjacent fields were flush to each other where they were supposed to be, and no two

polygons would overlap.

Decisions about the “true” location of polygons vertices were made using
best judgment, as many field walls are obvious demarcations of parcel limits. The
easiest fields to delineate were those whose borders were demarcated by well-
managed field walls or by roads, as seen in Appendix C. Some characteristics of
difficult delineations include fields whose rear boundary was defined by severe slope
and large irregular limestone slabs, or residential lots that staged agricultural
equipment around its perimeter. An example of some unobvious field boundaries can
be seen in Appendix C. Extreme conservatism extra care was used in judging the
perimeter of these parcels by retaining as much of the original geometry as possible.
To make accurate edits, but not get overwhelmed by the intricacies of field wall
pivots, the data was usually scaled between 150 — 250:1m. Vertices were aways
placed on the best approximation of the center of field walls. The polygons were
displayed with a degree of transparency and proper symbology to ease in the
visualization of the rasters they were to be corresponding to. In ArcMap, the end
vertices of adjacent fields would be snapped together, and then the edge that they
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were supposed to share was snapped together using topology tools. The resulting
shared edge would be edited together, again using tools from the same topology
toolbox. Keyboard shortcuts were created in ArcMap to speed up the editing
workflow. The topology tool was used upon completion of each site and then upon
completion of al sitesto scan for any polygons that were not flush as they were
meant to be. Where polygons extended past the limits of the remote sensing data,
vertices were snapped at the intersection of their “true” location on field walls and
the limit of theraster. No polygon edge was edited outside of the geographic limit of
raster information. It should be noted that the metric for field area was recal cul ated
after the editing procedure of the LPIS Field Data Shapefile. This shapefile has been

shared with Caomhnt Arann to aid in any future spatial analysis done on Inis Mér.

54 Predictors

The final data frame used for the “Large Model” and the Principal
Component Analysisincluded 317 observations of 48 variables. The variables
chosen source from the Individual Bands, NDV I, NDV I derived rasters, DEM, and
the LPIS Field Data. Mean, Range, and SD Zona Statistics were cal culated amongst
each field polygon for the NDV1 and its derivative rasters, Mean, Median, Range,
and SD for theindividual bands, Mean, Range, SD, Min, and Max for the Slope
raster, and Areafor each polygon was also calculated. Caomhnii Arann provided a
shapefile containing 369 observations. 3 of these observations were removed
because they were entirely outside of the extent of remote sensing data, and 49 other
observations were removed because they met an arbitrary threshold of percent
coverage of remote sensing data chosen for thisthesis. Fields whose area was not at
least 80% covered by the remote sensing data were removed from the subsequent
statistical analysis.

Table 3. List of predictors and their source data

MS Bunds Blue Green Red Red Kdge Near Infrared
Mean Mean Mean Mcean Mcan
Standard Deviation Standard Deviation Standard Deviation Standard Deviation Standard Deviation
Range Ramge Range Range Range
Median Median Median Median Median
NDVI Original NDVT Fucul - Mean Focal - 8D Fuual - Percentile Fucal - Runge
M Meim e Mean Mean
Stamchamed Dioviation Stmidand Deviation Sl Devinlion Stimdard Deviation Stamland Deviastion
Rmge Bage Rmge Range Range
Iligh Pass Filler Low Pass Filler Surlace Slope LIPS Field Dala
hcan Mlcan Mcan Arca
Standard Deviation Standard Deviation Standard Deviation
Fange Bange Eange
Win
Max
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The LPIS Field Data also included a code representing farm ownership.
There were 35 unique farm codes representing farm ownership. Figure 22 shows the
relationship between field size and score but averaged per farmer. This visualization
shows that there is not much variability in the case from farmer to farmer and that the
performance of an individual farmer will not affect the classification model. For this
reason, Farm Code was excluded from the final dataframe. Farms are scattered as
can be seenin Appendix D. It shows the dispersion of the 10 farmers with the
largest number of separate holdings. Individua farmers have a diverse landscape
character across their fields and typically perform across the scoring system

spectrum.

Average Score and Area per Farmer

20"
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Figure 22. Relationship between area and grazing score averaged per farmer

55 Exploratory Analysis

Exploratory anaysis was done by making Box Plots of the areaof LPIS farm
units, and the zonal mean and standard deviation for each of the input rasters. These
variables were taken from the data frame shown in table 3. The datawas
summarized using the field scoresasacasefield. Theinput rasters were created
from the multispectral imagery and the zonal statistic variables were created using
ArcMap 10.8.1 for Desktop. The accompanying boxplots and al data analysisin this
thesis were done in R studio using the programming language R. Variable width
displays the width of each candle as they represent the percentage of observations
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and the color of each candle matches the symbology used for each grazing group

across the entirety of thisthesis.
5.5a Correlation Matrix

Due to the nature of the input rasters, asignificant level of collinearity was
expected. A correlation matrix was constructed to observe thisin preparation for
model refinement. The actual variables which constitute the data frame are zonal
statistics calculated in GIS for each field polygon. The correlation matrix was built
using the corrplot library in R.

5.5b Principal Component Analysis (PCA)

Multi-collinearity of input variables can make the interpretability of variable
importance in classification models quite difficult. Animportant goal of thisthesisis
not only to attempt classification but tell Caomhn( Arann what inputs are relevant in
future remote sensing surveys. A Principal Component Analysis helped achieve this
goal. All input data shown in table 3 was also used in a Principal Component
Analysis.

5.6  Iso-Cluster Unsupervised Classification

Because Random Forest is a supervised classification technique, this thesis
hoped to diversify its contribution to Caomhnt Arann’s efforts by also including an
unsupervised classification technique. The unsupervised classification method used
was |so-Cluster Unsupervised Classification. This method uses an isodata clustering
algorithm to determine the characteristics of the natural groupings of cells
(Lemenkova 2021). This operation would be used to create a 3 class raster, 5 class
raster, and 10 classraster. The 3 class raster was classified using only the NDVI as
an input raster, while the 5-class and 10-class rasters were constructed using the
NDVI and Slope as input rasters. Default values for this unsupervised classification
tool in ArcMap were used. These include the number of iterations of the clustering
process to run (20), the minimum number of cellsin avalid class (20), the interval to
be used for sampling (10). No signature file was created in ArcM ap because the
supervised classification was to be done in R using the Random Forest Model.
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5.7 Random Forest Classification

The decision to build arandom forest model was made for its ability to
classify ordinal data and ease of construction and understanding. Random Forest isa
common method for supervised classification. These models are a defined number
of decision trees that randomly generate vectors from the input data frame for each
tree. The most popular result for each observation across every tree electsits
predicted class.

5.7a PCA Random Forest M odd

Principal component analyses plot input variablesin as many dimensions as there are
input variables, and project the data onto new components. The result will provide
you with as many components as you provided input variables, but with a
satisfactory coverage of explained variance in fewer variables. The new components
will reflect the same dataset, |essen collinearity present in the original dataset, and
decrease the number of variablesin any further modeling. In the case of thisthesis,
the 47 variables which built the large random forest model were transformed,
resulting in 47 components. The first ten components were selected and bound to the

original observations, and used as predictorsin

All parameter settings remained constant across all six Random Forest
Models, but mtry, which stands for the number of predictors from which a best split
ischosen in each decision. The default value for mtry in the ranger package is the
(rounded down) square root of the number variablesin the model. Thisdefault value
was used in each model. For this model, with 10 input variables in total, the mtry
valueis 3. The minimum size for terminal nodesin this and al Random Forest
Modelsin thisthesisresearchis 1. Thisisrecommended for classification modelsin
the documentation published for the R package Ranger (Wright 2021).

57b LargeMod€

The largest Random Forest model built in the effort of this research, hereon
titled “Large Model”, was constructed with every input variable used in the Principal
Component Analysis. . For this model, with 47 input variablesin total, the mtry

valueis®6.
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5.7c  Small Moddl

The variables chosen for the more selective smaller model were derived from
the original data set. There were no zonal statistics chosen from the same input
raster and all variables chosen possessed a level of variable importance in the “Large

Model” greater than the median. The input variables can be seen below in table 4.

Table 4. List of predictors and their source data for smaller selective model

MS Ty Green Kced Edge Near Infrared |
Median Median e
NDVI Origlnal NDVI Focal - Mean Focal - SD Focal - Percentlle Focal - Range
Stantdird Dueviaion Standird Deviation Mo Stamdard Deviation Mewn
1ligh I'ass Filter Low I'ass Lilter Smurface Slope | LI'LS Lield Data
Standard Deviation Standard Deviation Min Area

The purpose of this smaller model was to evaluate if the variables with the
greatest variable importance in the “Large Model” could construct a classification
model with better prediction accuracy. The goal of thisresearch isto give Caomhnu
Arann the most information possible. Analyzing results from random forest models
with different inputs will achieve thisgoal. For thismodel, with 12 input variablesin
total, the mtry valueis 3.

5.7d  Percent Area of Unsupervised Classes— Random Forest Models

The percent area of each of each classin the resulting rasters was calcul ated
per LPIS field unit. The method for doing so included rasterizing the LPIS Field
Data and setting the pixel size to match that of the classification raster, and then
using the “Tabulate Area” function in GIS. To assure proper calculation of area %,
the sum of the area of the classes present in each polygon was used as the
denominator, in contrast, to simply using the total area of the polygon itself. The
resulting variables which were used in Random Forest Classification were % Class 1,
% Class 2, ... % Class 10 of each LPISfield unit. For these models, with 1, 5, and

10 input variables, the mtry valueswere 1, 2, and 3.
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Appendix D
Nicholas Liquori CZU FES
Coordinate System: IRENET95 Irish Transverse Mercator

Legend

500 250 0 500 Meters The 10 farmers with the largest munber of unique LPIS units are
B BN displayed here to visualize the scattered nature of landholdings on the island



Page 24

Chapter 6

6.1 Exploratory Analysis

As hypothesized, NDV1 was significant to the grazing score of

individua fields. Fields scored 5 possessed a higher standard deviation but alower

mean of NDV I values across asingle field. Thisthesis aso paid attention to the

diversity of green candles across the five grazing scores but could not identify any

sign that green values are highest in mixed grasslands (He 2006).
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The group of fields scored 5 has the highest mean Standard Deviation of
NDVI values as well as the tightest range. While the group mean of mean NDV |
values shows no clear pattern, the Standard Deviation and Range of these values for
the group of fields scored 3 does match with the hypothesis of thisthesis. The mean
values for slope across the 5 groups a so matches the geographic distribution of field
scores across the subject site. Thereisagenera directional trend for the mean
geographic center of each score group as shown in Appendix B. Dueto the
concentration of samplesin the NE corner of the subject site, there is ageneral sway
of the mean centers towards that corner, but most promising is the obvious sway of
mean centers from 5-1 moving in a northerly direction towards the coast. The
winterage, which is mostly made up of 5sand 4s, islocated on the high flat plateau
in the central belly of theisland. Most of the lower-scored fields made up of
improved land are located on the northern sloping plain up to the coast. These

results match the genera characteristics of these score groups.
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Figures 38 and 39 display the box plot for the zonal statistics of the raster
output from the Mean Focal Statistics for the NDVI. These results are very close to
those of the box plots for the original NDVI. One can expect these two data sets to
be highly correlated. The remainder of the exploratory box plots of predictors can be
found in the appendix.
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Figure 38. Focal Mean NDVI — Zona Mean Figure 39. Focal Mean NDVI - Zonal SD

6.2 Correlation Matrix

The results from the Correlation Matrix proved the high collinearity of input
variables. Zonal meansfor NDVI derived variables had a strong positive correlation
with other zonal means from the same derivation and a strong negative correlation
with zonal Standard Deviation from NDV sourced variables. Slope and Areawere
uniquely sourced and thus showed the relatively small correlation coefficients
expected of them. Amongst variables sourced from dissimilar rasters, the highest
level of collinearity was between variables derived from the Red band and the zonal
Mean and Standard Deviation of NDV| sourced rasters. This does not comeasa
surprise asthe NDV| is calculated from the Red Band. See Figure 39 for the
Correlation Matrix. These results came into consideration when limiting the number

of inputs into a smaller random forest model.
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The resulting scree plot, which shows the percentage of explained variance in
each component, can be seenin figure 41. This displays the percentage of explained
variance projected onto each of the first ten components. The cumulative proportion
of variance present in the first 10 componentsis 94.151 %. Thisthesis was always
going to be satisfied with a stopping point of 90% cumulative proportion of variance
and the 10" component also satisfies the Guttman-Kaiser criterion which isto
analyze components that have an eigenvalue greater than 1 (Jackson 1993) (Jackson
2003). The overal goa of the principal component anaysis was to remove
collinearity in the data, discover which variables were most important, and provide
an alternative to alarge random forest model built by an overwhelming data frame.
The ten principles were bound to the source data and used as predictors in a Random
Forest Classification model.

The input variables and their contribution percentage of explained variance within
the first two component dimensions can be seenin Figures 42 and 43.
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Contribution of variables to Dim-2
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The Biplot (figure 45) output from the PCA tells alot about the input
variables’ contribution and variability exhibited in the first two components.
Additionally, there is evidence pointing to which variables are most relevant to
specific grazing scores. The variability of variables derived from the individual
bands of the multispectral imagery appears to be represented very well in the first
two components, and their contribution to the first component specifically isvisible
by its easterly orientation on the x-axis. In genera, the variability from remote
sensing imagery (Individual Bands and the derived NDV1) is expressed well in the
first two componentsin contrast to field area and variables derived from the terrain
slope (See figure 45). Variables derived from slope do appear to have astrong
negative loading on component 4 as seen in figure 46. Clusteringamongst grazing
scores is not obvious in the biplot of the first two components, but perhaps the tight
ellipses of the score 5 observations can hint at success in the abilityto predict these
farmsin the random forest model using the first two components.
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Figure 45. Loading plot of first two components
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Variables - PCA
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Figure 46. Loading plot of third and fourth components

6.4  1so-Cluster Unsupervised Classification

This section shows the percent area of each class from the unsupervised

classification rasters per LPIS field unit averaged per each grazing score group.

6.4a 3Class

Using intuitive observation of NDV I values on the subject site, it appeared
that the degree to which the surface was vegetated could be classified into three
groups. These hypothetical three groups are non-vegetated surface (e.g. limestone,
gravel drives, developed areas), intensively grazed grasslands and semi-natural
priority habitat. Upon initial observation of the resulting raster, the Iso-Cluster
Unsupervised Classification appeared to agree with the hypothesis.



Page 33

Iso Cluster Unsupervised Classification - NDVI 3 Classes

Percent Class 1 Percent Class 2 Percent Class 3
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Figure 47. Average percent coverage of each classification class per grazing score

6.4b 5Class

The 5 Class unsupervised classification raster was built to match the 5
grazing scores used by Caomhnt Arann. The |so-Cluster Unsupervised
Classification tool in ArcMap was unable to cluster 5 classes that satisfied the
minimum number of pixels threshold of 20 with the NDV1 as an alone input raster.
Sointurn, this unsupervised classification was built using the NDVI and Slope
Raster. The bar plot in figure 48 displays the average tabul ated area of each class
within each grazing score group. The biggest outliersin this data visualization are

the relative presences of Class 1 within Grazing Score groups one and five.

The Random Forest Model built with thisinput data included the original 317
observations of the newly created 5 variables. These variableswere % Class 1 - %
Class 5. For thismodel, with 5 input variablesin total, the mtry valueis 2. The
minimum size for terminal nodes in this and all Random Forest Modelsin thisthesis
research is 1. The purpose of this model built with the tabulated areas of the
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unsupervised classification was to expose the Random Forest Classification to a

different representation of the input data.

Iso Cluster Unsupervised Classification - NDVI/Slope 5 Classes

Percent Class 1 Percent Class 2 Percent Class 3 Percent Class 4 Percent Class 5
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Figure 48. Average percent coverage of each classification class per grazing score

6.4c 10Class

The 10 Class unsupervised classification raster was built to provide an
extreme case of unsupervised classification. The Iso-Cluster Unsupervised
Classification tool in ArcMap was unable to cluster 10 classes that satisfied the
minimum number of pixels threshold of 20 with the NDV1 as an alone input raster.
So in turn, this unsupervised classification was built using the NDV1 and Slope
Raster, just the same as the 5 Class unsupervised raster. The bar plot in figure 49
displays the average tabulated area of each class within each grazing score group.
The biggest outliersin this data visualization are the average relative presences of
Classes 1, 2, & 3fields scored five and one. Fields scored five on average also
display a higher percent presence of class 5, 6, 7, & 8. The distinction between
Grazing score groups one and five shows potential for this data to have successin the

Random Forest Classification.
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Iso Cluster Unsupervised Classification - NDVI/Slope 10 Classes
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Figure 49. Average percent coverage of each classification class per grazing score

6.5 Random Forest Classification

Amongst the 6 supervised classification methods used, the model built from
thefirst 10 dimensions of the Principal Component Analysis proved to be the most
successful in predicting the grazing scores. It also possessed the highest Balanced
Accuracy of any single class (class 5). This chapter will include detail the results of
the confusion matrix and variable importance for each Random Forest Model. Al
confusion matrices shown in this chapter were constructed using the caret package
(Kuhn 2022) in R and variable importance bar plots were built using the ggplot2
packagein R.
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6.5a PCA Random Forest M odel

Table 5. PCA RF Model Confusion Matrix

PCA Random Forest Model ThIS model pom the
Relerence
1 2 3 4 5 ..
A T T T 5 = lowest OOB prediction error % and
2 2 22 75 26 10 7 i
2l s 0 2 p ) highest balanced accuracy for any
3 4 z ] 3 2 4 2
5 s s o | 18 & individual Grazing Score class
Qrerpll SoutEecs amongst the 6 random forest models.
A r 05189 . . .
bl A Whileits overall predicted accuracy
Nu Information Rate 0 2571 .
PValue [Acc > NTR] : 2.20L-16 was only .5489, its balanced accuracy
Kappa : 0.3971 for fields scored five was .8401. This
Menemar's Test P-Value 1 5.55T5-10 may be due to the pra/al ence Of CI ass
RERRACy e Five amongst the data set. The same
Class: 1 Class: 2 Class: 3 Class: 4 Class: 5 .
Sensitivity 04231 08242 0042553 0094 os3ss  CAl a'so be said about Class Two.
Specificily 08981 07121 0981481 0.96361  0.8118
Pos Pred Value pato usss7 o2ssT4 st wesse  Classes Three and Four had
Neg Pred Value 08881 0.0006 0.854830 (.87450  0.0333
Prevalence 0164 N3871 (148265 0.13240 02681 remarkably low Sensitivity across al
Detection Rare 00694 02366 0.006300 0.01262 0224
Delectivn Prevalence 0 LS_-M: [l.-!-ﬂi:i U.OEEICI§2 0.[_14416 03375 mOdeI S The IOW SenSItIVIty of
Balanced Accmacy 06606 (7683 0512017 0324 08101

Classes Three and Four could be explained by the landscape characteristics of these
classes. It should be noted athough the grazing scores are ordinally ranked, they can

not be considered interval. The grazing score has been designed to fit the specific

Random Forest Model Built with Principle Components
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Figure 50. Variable Importance of PCA RF predictors



landscape phenomenon on theisland. Threes and Fours have the potential to be
Fivesif they were grazed properly, and it islikely that they often exhibit similar
mosaics of exposed limestone, thus resulting in ssimilar NDV I values. Inthis
Random Forest Model, 55.32% of the referenced “Threes” and 23.81% of the
referenced “Fours” were predicted to be scored a Two. Inlinewith thisrhetoricis
the percentage of Referenced Threes and Fours being predicted as having been
scored Five (Three — 21.28% and Four-42.86%). In fact, all resultsin each of the 6

confusion matrices are comparable relative to themselves.

The PCA-built Random Forest returned some puzzling results in the form of
variable importance as seen in figure 50. Most of the variability within the data set
was projected onto the initial components, but we see a strong amount of variable
importance within the random forest model from Principal Component 6. Figure 51

shows the constitution of the Dimensions 1 & 6 when plotted together. All variables
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showing a strong contribution also possess a strong positive loading on Dimension 1.

The variable importance in the small and large random forest models will provide

more insight into relevant data.
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Figure 51. Loading plot of first and sixth components



6.5b Large Random Forest Model

Table 6. Large Model Confusion Matrix

l.arge Random Forest Model
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The large model showed
comparable ratios between the
balanced accuracy of each of the 5
classes. And once again, incredibly
low false or true prediction of classes
3and 4. Theresultsfrom the
Correlation Matrix show the high
collinearity between multiple
variables within the original data set
used to build the Large Model. By
analyzing the variable importance of
thismode (figure 52) and the
contribution of variablesto the
principal components, a smaller more
selective model should yield a higher

prediction accuracy. The dominating variable importance of variables derived from

the Blue band is of concern because of issues with the data discussed in chapter XX.
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Figure 52. Variable Importance of Large Model predictors



6.5c Small

Table 7. Small Model Confusion Matrix
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The small model showed comparable
ratios between the balanced accuracy
of each of the 5 classes. And the
lowest false or true prediction of
classes 3 and 4. By analyzing the
variable importance of this model
(figure 53) the only observable trend
isthe low variable importance of
variables representing the Standard
Deviation zonal statistic. This model

Class: 1 Class: 2 Class: 3 Class: 4 Class: 5§ . .
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Figure 53. Variable Importance of Small Model predictors



Page 40

6.5d Tabulated Area of Unsupervised Classification Rasters

6.5d.1 3 ClassModel

Table 8. 3 Class tab. area RF Confusion Matrix
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Statistics by Class
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The Random Forest Model
built using the tabulated area of the 3
class I1so-Cluster Unsupervised
Classification raster produced the
lowest prediction accuracy of all 6
models. It performed so poorly that
the Balanced Accuracy of Class 2 and
Class 5 which performed moderately
well in the previous 3 models are
nearly on par with the balanced
accuracy of the other three classes.
Noticeable is the greater number of
predictions of Class 3 and 4 compared
to the other models. Thisisalso true

in the Random Forest Model built using the tabulated area of the 5 class Iso-Cluster

Unsupervised Classification raster. Similar to the results of the previous models, a

plurality of the fields referenced as 3 were predicted asa 2, and a plurality of the
fields referenced as 4 were predicted as a 5.
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Figure 54. Variable Importance of 3 class RF model

3 Class NDVI Classification

Cleaa

6.5d.2 5& 10 ClassModels

Clss 2

il

The performance of the model built using the 10 class Iso-Cluster

Unsupervised Classification raster more closely resembled the results of the PCA,

Large, and Small models than the other 1so-Cluster Unsupervised classification

models. Seefigures XX for the confusion matrices for the 5 and 10 class models.

Table 9. 5 Class tab. area RF Confusion Matrix
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Table 10. 10 Class tab. area RF Confusion Matrix
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5 Class NDVI/Slope Classification

Figure 55. Variable Importance of 5 class RF model
10 Class NDVI/Slope Classification
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Chapter 7

Discussion

Upon investigation of the input data, some flaws were discovered. Acrossall
sites, there appears to be astriping issue. This can be aresult of the sun’s position in
the sky, the chosen gimble angle, or the cloud cover at the time of the survey. The
original images acquired by GeoAerospace were not provided for this thesis and that
limited the ability to troubleshoot thisissue. The result, however, was an
Orthomosai ¢ with 30m wide stripping running north-south. The striping is realized
by differentiating pixel values for otherwise similar objects. It can be visualized
quite well in the NDV 1, where along gravel roads, one can withess NDV | value
jumping = .4 every roughly 30 m. Thisthesis suggests any future use of this data set
would first attempt to correct the atmospheric disturbances using a Fast Fourier
Transformation, Flat Field Correction, or Internal Average Relative Reflectance
(IARR) (Chen 2017) (Kokka 2019) (Ben-Dor 1994) (THOR). Table 11 below

displays the raster statistics for the multispectral imagery captured in each of the 3
Sites.

Table 11. Statistics of multispectral bands per site

Blue Values Green Values Red Values
Site L 2 3 Site 1 2 3 site 1 2 3
Max 7650 21103 wp2s  Max 9635 28576 21659  Max 10530 359838 28179
Mean 162225 208287 572.874 Mean 279808 312616 21469 Mean 220134 258816 177352
SD 982.218 15449 378.057 SD 953.735 154825 £9566 SD 1326 68 197342 1203.9%
Red Edge Values Near-Infrared Values

Site 1 2 3 Site 1 2 3

Min 21 0 0 Min 1 0 0

Max 21096 57722 56665 Max 32386 65535 64752

Mean 907787 102477 680821 Mean 13812.5 15797.5 9409

sD 1981.24 398797 1266325 5D 3477.15 661452 387524

Another issue with the provided multispectral data was the significantly low
values from the Blue band in the site known as Mo6r 3 (NE site). Dueto the limited
time and resources associated with this research, and the difficulty of communicating

by email, this thesis cannot provide an answer for thisanomaly. It isfor thisreason,
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however, that no variables sourced from the Blue band were included in the “Small”
model. This research could have worked off of the theories outlined in Strong’s
paper much more, specificaly the usefulness of the ENDV I index, if the values of
the Blue band were not in question.

This research differs from most grassland classification attemptsin that it
attempted to classify pre-existing field units, often made up of multiple pastures, by a
pre-existing scoring structure. Most classification attempts (Xu 2019) (Svoboda
2022) are at the pixel level, not polygon.
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Chapter 8
Conclusion

While a supervised classification model such as a Random Forest was not
proven to accurately classify any grazing score, there was promise in the ability to
classify fields scored 2 and 5. If the large sample size of these two groupsis
affecting the model’s ability to classify these fields, then there is also promise in the
prospect of the model being more successful with alarger data set or perhaps
temporal data. Thisthesisif anything, gives Caomhnt Arann a starting point for

thelr prospective remote sensing endeavors.
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