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Abstract

Results Based Agri-Environmental Payment Schemes are powerful tools for

protecting HNV farmland in Europe.  The landscape present on the Aran Islands is

one mosaiced by species-rich semi-natural grasslands and exposed limestone

bedrock.  The presence of rare flora species is owed to long-standing, traditional,

low-intensity grazing practices.  Caomhnú Árann monitors the farms of those who

have enrolled in the program and provides a grade 1-5 ultimately depending on

grazing level, presence of indicator species, adequate water provisions for cattle, and

scrub maintenance.  Unmanned Aerial Vehicle (UAV) acquired multispectral data

can aid in the classification of these farmlands and limit the expenditure of time,

money, and resources by Caomhnú Árann. Supervised classification by Random

Forest Models was used to predict the grazing score of input fields with the highest

overall accuracy by a single model of (54.78 %). This accuracy was achieved by the

Random Forest Model which used the first 10 dimensions from a Principal

Component Analysis as predictors.  This model also achieved the highest balanced

accuracy of any individual grazing class (class 5 – 84.01%).  The variables which

underwent the PCA and that built the other random forest models were various zonal

statistics of the individual bands from the multispectral imagery, Normalized

Difference Vegetation Index (NDVI) and NDVI derived analytical rasters, and a

Digital Elevation Model (DEM).  This research may have not successfully proven the

full employability of a particular classification model as it pertains to the

conservation interests of Caomhnú Árann and the Aran Islands, but there is promise

in the ability to classify specific grazing scores.  Scores 2 and 5 obtained the highest

Balanced Accuracies across all 6 Random Forest Models.  The results show that a

Random Forest Model could be used by Caomhnú Árann in their future research if

the collinearity of input data is corrected by performing a Principal Component

Analysis, and input data is processed to limit the errors inherent with UAV acquired

data.

Keywords: Multi-Spectral Imagery; Semi-Natural Grasslands;
Vegetation Index; Agri-Environmental Schemes; Random
Forest Classification



Abstract

Results Based Agri-Environmental Payment Schemes jsou účinnými nástroji

pro ochranu zemědělské půdy s vysokou přírodní hodnotou v Evropě. Krajina

Aranských ostrovů je tvořena mozaikou druhově bohatých polopřirozených pastvin a

odkrytých vápencových skalních útvarů. Dlouhodobé, tradiční pastevní postupy s

nízkou intenzitou uplatňované v této krajině vyústily v přítomnost vzácných druhů

rostlin. Projekt Caomhnú Árann monitoruje farmy zapojené do programu a v

závislosti na intenzitě pastvy, přítomnosti indikačních druhů, adekvátních zásobách

vody pro dobytek a údržbě křovin jim přiděluje známku 1-5 (tzv. pastevní skóre).

Multispektrální data získaná bezpilotními leteckými systémy (UAV) mohou pomoci

při klasifikaci těchto zemědělských oblastí a omezit tak časové, finanční a jiné

výdaje projektu Caomhnú Árann. V této práci byla k predikci pastevního skóre

použita řízená klasifikace UAV snímků metodou Random Forest. Nejvyšší celkové

přesnosti (54,78 %) bylo dosaženo v modelu, v němž bylo jako prediktorů použito

prvních 10 hlavních komponent vypočtených ze všech dostupných vstupních vrstev.

Tento model také dosáhl nejvyšší vyvážené přesnosti v rámci jednotlivých tříd

pastvy (třída 5 – 84,01 %). Proměnné, které sloužily jako vstupy do analýzy hlavních

komponent či jako samostatné prediktory v jednotlivých modelech, byly různé

zonální statistiky jednotlivých pásem z multispektrálního snímku, normalizovaný

vegetační index (NDVI), analytické rastry odvozené od NDVI a digitální model

nadmořské výšky (DEM). Tato práce sice neprokázala plnou použitelnost

konkrétního klasifikačního modelu pro účely ochrany přírody Aranských ostrovů v

rámci projektu Caomhnú Árann, naznačuje však, že určitá konkrétní pastevní skóre

klasifikovat lze. Skóre 2 a 5 získaly nejvyšší vyváženou přesnost (balanced accuracy)

ze všech 6 modelů. Výsledky ukazují, že Random Forest modely by mohly být

použity v dalším výzkumu v rámci projektu Caomhnú Árann, za předpokladu

vyřešení kolinearity vstupních dat provedením analýzy hlavních komponent a

předzpracování vstupních dat z UAV tak, aby byly opraveny chyby v těchto datech.
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Chapter 1

Introduction
1.1 Language Note

As the islands are a part of the Gaeltacht, this thesis will attempt to best retain

the Irish spelling of place names, where it does not interfere with the ability of

English Speakers to read along. Inis Meáin and Inis Oírr will retain their Irish

spelling, but the largest island and that of our subject site, Árainn will be referred to

as Inis Mór to not confuse English speakers with the name for the whole island chain

“The Aran Islands”. This is done out of respect for the community and individuals

who made this effort possible. As Tim Robinson (2008) spiritually puts it in his book

“Stones of Aran: Pilgrimage”, “since the islands are a principal part of the Irish

language’s last precarious foothold on the world” an ethical duty is placed upon

outsiders to respect the culture and traditions of the place they wish to observe

science.

1.2 Introduction

Caomhnú Árann is a project under the EU’s European Innovation Partnership

for Agricultural productivity and Sustainability (EIP-AGRI) funded by the

Department of Agriculture, Food and the Marine (DAFM). The project monitors

2,307 hectares of grazing land across all three islands within the Aran Islands

(Caomhnú Árann 2020b). See Appendix A for the location of the Árann Islands and

the subject site.

The project seeks to encourage farmers to maintain traditional, low- intensity

grazing practices in an effort to conserve priority habitat.  Modern socio-natural

relations on the Aran Islands and The Burren have trended towards two farming

outcomes: intensification or abandonment (McGurn 2017, McGurn 2020b). Factors

of these relations include “low farm income, small and fragmented holdings, low

productivity land, and high labor intensity of optimal conservation methods” (EIP-

AGRI 2019).  Farmers have been either abandoning their agricultural practices for

jobs in the tourism sector and jobs off-island, or intensifying practices to increase

income (Rensburg 2009).  Both poles on this spectrum contribute to a decrease in

biodiversity, and degradation of the natural heritage which drives the tourism sector.
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Caomhnú Árann is a successor to the AranLIFE Project, which was funded

by the EUs LIFE+ program and ran from 2014 to 2018.  The project worked with

farmers to assess whether they would be interested in participating in a results based

payment scheme, and if such would positively contribute to species rich grassland

habitats found on the islands.  Aran Island farmers were exposed to the success of the

BurrenLIFE project in the Burren, County Clare.  The Burren is an eco-region

hosting similar species rich grasslands and exposed limestone pavement, with a

history of low-intensity grazing (McGurn 2020).  BurrenLIFE would become a

model for farmers on the Aran Islands looking to protect their natural heritage and

economic livelihoods.

Caomhnú Árann developed a simple scoring system that grades for the

quality of grassland habitat driven by grazing levels.  Fields are scored one through

five, with a score of five receiving the highest payments.  Payments are also provided

for active improvement measures of scrub control and installation of adequate water

provisions.  All three factors are key to the production of species-rich grasslands.

The first requirement for a field’s eligibility within Caomhnú Árann is that it must be

grazed.

Due to the traveling limitations inherent with an island chain, it is in the interest of

Caomhnú Árann to be able to score fields with as little ground-truthing as possible.

An informational campaign was run during the tenure of AranLIFE, and now

Caomhnú Árann, to make farmers knowledgeable on desirable grazing techniques

and corrective action.  A goal of this campaign is to enable farmers to grade farms on

their own.  In 2020, 25 farmers were randomly selected to grade their own fields

using resources provided by Caomhnú Árann (Browne 2020).  While additional

training has been delayed due to travel restrictions brought upon by the Covid-19

pandemic, there exists a strong correlation between the scores issued by farmers and

Caomhnú Árann.  A combination of self-assessment done by farmers and verification

by remote sensing will lessen project expenses and put those funds back into the

pockets of farmers. The data coverage included in this thesis is limited to three small

adjacent sites on Inis Mór, but it is assumed that the similar landscape features found

on Inis Meáin and Inis Oírr will allow for this research to be applicable on those

islands as well.
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Chapter 2

Objectives

The goal of this research is to validate the ability to assess habitat quality in

semi-natural grasslands of the Aran Islands, Ireland using multi-spectral imagery. If

results find that a statistical relationship exists between habitat quality (As defined in

the “Grazing Scoring System” of the Agri-Env Scheme Caomhnú Árann) and one or

more spatial variables, then it can help identify the most relevant and sufficient

variables for predicting priority habitat in pastoral semi-natural grasslands in

Northern Europe, and particularly the Aran Islands, Ireland. This will help the

plausibility assessment of agri-environmental schemes for these landscapes, assist

existing local schemes to expand their project scale and find new participants, and

streamline operations and limit input expenses.
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Chapter 3

Literature Review

3.1 Caomhnú Árann Operations

The current five-grade scoring system is simpler than the previous system used

by AranLIFE, the ten-grade system employed by the successor to BurrenLIFE, The

Burren Programme, and other Results Based Agri-Environmental Payments (RBAPS)

(Dunford 2020) (McGurn 2020).  It is not a continuous scale, but rather ordinally

categorizes different fields. Considered criteria when determining a field’s score are

adequate water supply, controlled scrub or bracken, and most importantly it is the flora

biodiversity and existence of key indicator species. Parcels are graded as the units in

which they are defined by the Land Parcel Identification System (LPIS) unless further

subdivided to correspond with the obvious delineation between grazing scores.  If a field

is >30% semi-improved/improved land then the two land uses will be scored separately

(Caomhnú Árann 2018).

Bird’s-

foot

Trefoil

Spring

Gentian

Harebell Bloody

Cranesbill

Pyramidal

Orchid

Common

Milkwort

Common

Spotted

Orchid

Early

Purple

Orchid

Wild

Thyme

Eyebright Devil Bit

Scabious

Lady’s

Bedstraw

Yellow

Rattle

Kidney

Vetch

Table 1. List of Indicator Species (Caomhnú Árann)
Source: www.caomhnuaranneip.ie “Field Scoring System for Assessing Habitat Condition”
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The lowest score of 1 is given to fields that are ungrazed.  These are

predominately located closer to the shore or along roads and are defined by limestone

crags, staging yards, and seldomly tilled land. Most fields receiving a score of 1 will

never be eligible for RBAP payments, but where possible, an extensive amount of

manual scrub removal will have to take place alongside the reintroduction of grazing and

proper provisions of water supply for cattle.

For scores 2-5, field

inspections consider the

prevalence of indicator species

present in 10 random 1m2

quadrants and scrub surrounding

the fields’ perimeter.  Fields

scored with a 2 characteristically

differ from fields scored 3-5 by

evidence of soil improvements

and summer grazing.  In the

subject site of this thesis on Inis

Mór, these fields are

predominantly located along the

low laying plain sloping towards the northern shore of the island.  They are also in closer

proximity to the road and not categorized as winterage (Dunford 2020).

Figures 1-2. Examples of grazing score 1 (Caomhnú Árann)
Source: www.caomhnuaranneip.ie “Field Scoring System for Assessing Habitat Condition”

Figures 3-6. Examples of grazing score 2 (Caomhnú Árann)
Source: www.caomhnuaranneip.ie “Field Scoring System for
Assessing Habitat Condition”
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The largest difference between fields scored 4 and 5 is the percentage of scrub

cover.  A field scored 5 is allowed to 20% scrub coverage, “as long as it is contained to

the edges”.  Both 4s and 5s should display a high number of indicator species, but there

may be trace evidence of slight under grazing on a 4.  A field with a score of 3 is grazed,

but possesses a lot of issues not present in a 4, but is certainly not improved and as green

as a field earning a score of 2. These issues include bare sand caused by overgrazing in

Machair habitat or dominance by Molinia.  The collection of fields scored with a 3

varies in character much more than the other score groups.  See Table 2 for a breakdown

of field scores within the subject site of this thesis.

Figures 7-10. Examples of grazing score 3 (Caomhnú Árann)
Source: www.caomhnuaranneip.ie “Field Scoring System for
Assessing Habitat Condition”

Figure 11. Examples of Molinina
Issue in grazing score 3 (Caomhnú
Árann)
Source: www.caomhnuaranneip.ie
“Field Scoring System for
Assessing Habitat Condition”

Figure 12. Examples of Damaged
Machair in grazing score 3
(Caomhnú Árann)
Source: www.caomhnuaranneip.ie
“Field Scoring System for
Assessing Habitat Condition”
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Table 2. Summary of fields used in final data frame sorted by grazing score

Figures 13-16. Examples of grazing score 4 (Caomhnú Árann)
Source: www.caomhnuaranneip.ie “Field Scoring System for
Assessing Habitat Condition”

Figures 17-20. Examples of grazing score 5 (Caomhnú Árann)
Source: www.caomhnuaranneip.ie “Field Scoring System for
Assessing Habitat Condition”
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Caomhnú Árann is currently undertaking a project of their own to assess the

use of UAVs to score habitat quality.  This thesis is done independently from

Caomhnú Árann, but with overlapping interests and goals.  All remote sensing data

and on ground data used in the subsequent data analysis was provided to the author

by Caomhnú Árann by their own generosity.  The author is not aware of Caomhnú

Árann’s analytical approach and has only been provided data and general

information on the organization.

Although the beauty of the islands’ landscape comes from its observantly mosaic

structure (McGurn 2020), from a classification perspective it is limited.  Present on

the island is an abundance of limestone, whether in the form of field walls or natural

slabs, semi-natural grasslands, scrub, gravel or bituminous concrete drives, and

structures.  The nature of the conservation scheme makes this research most

concerned with vegetated land cover and limestone slabs that exist within grazed

areas.  These vegetated habitats may be diverse, but this research was not concerned

with classifying individual communities or species.

The agricultural practice of winterage is an efficient tradition that has likely

been in place since the arrival of neolithic pastoralism(O’Rourke 2005) (Dunford

2020)(McGurn 2020).  Its efficiency can only be complemented by a conservation

scheme that employs the same efficiency.  Caomhnú Árann is a team of three

scientists, Scientific and Technical Officer: Amanda Browne, Financial and

Administration Officer: Gráinne Ní Chonghaile, and Project Manager: Patrick

McGurn, responsible for 125 scattered farm holdings across three separate islands

(Caomhnú Árann 2020).  It is imperative that they are able to limit expenses and time

to secure the financial health of the project and its participants.  If on-site field

assessment by Caomhnú Árann staff was solely relied upon to provide Grazing

Scores, then the project must consider expenses such as overnight accommodation,

extensive labor, and nautical transportation fees.  To combat these high expenditures

of time, money, and resources, Caomhnú Árann is pursuing farmer self-assessment

as the next step in RBAS (Browne NRN EIP-AGRI BLOG).  Future research is

required on the success of a hybrid model where multispectral imagery is used to

cross-reference self-assessment by farmers.
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3.2 Remote Sensing

GeoAerospace Ltd. was employed by Caomhnú Árann in 2019 to classify

fields into grazing scores using imagery from the Sentinel 1 & 2 satellites.  The

grazing scores given to GeoAerospace Ltd. by Caomhnú Árann were collected in

2016 and thus, satellite imagery from the same year was used in the classification

attempts.  During preliminary analysis, GeoAerospace Ltd. observed the spectral

response variation within each score class to construct an inconclusive classification

model and concluded that any machine learning classification attempts would be

would not be sufficient if built using the spatial resolution of the Sentinel 2 imagery

(10m2) (GeoAerospace 2019).

The recognition of the potential of UAV remote sensing in the field of habitat

modeling has been growing in the last 15 years (Lopez 2019).  Very often is land

which is deemed worthy of conservation in remote peripheral areas, with low funds

and resources.  UAV remote sensing can save laborious hours of field assessment by

small teams in expansive landscapes (Caomhnú Árann 2019).  UAVs are being

integrated with Real-time Kinematic Positioning technology, which enables

surveyors to avoid the preliminary setup of site targets, saving even more time.  The

exact model used, the DJI Phantom 4 Multispectral RTK, can achieve a horizontal

accuracy of 1 cm + 1 ppm, and a vertical accuracy of 2 cm + 1 ppm (Taddia 2019)

(Feng 2008).  Multispectral data is valuable in assessing grassland habitat for its

ability to construct Normalized Difference Vegetation Index (NDVI) (Strong 2017),

and the sheer amount of extra data (Komárek 2018).  While this thesis did not

include the construction of a normalized Digital Surface Model, the results did

compare with that of (Komárek 2018) in that classification accuracy was highest

when the model was built using different data types (topography and spectral data).

NDVIs are constructed on the fact that vegetation absorbs light within the

visible light spectrum for photosynthesis and reflects back infra-red light (Strong

2017).  Unlike Strong, this thesis was not attempting to specifically classify

vegetation at a community level, but fit a classification system to the Caomhnú

Árann Grazing Score System.  Strong’s research seeks to test the potential of an

ENDVI vegetation index to distinguish between different grassland habitats.  This

index was developed by LDP LLC, Carlstadt, NJ, USA and utilizes the Green and

Blue Bands alongside the NIR band (Strong 2017).  The equation for this index is
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((NIR + Green) – (2 * Blue)) / ((NIR + Green) + (2 * Blue)) (LDP LLC). This Index

builds upon the premise that the role of blue light in photosynthesis will “increase the

dynamic range of the index values” (Burnside 2020). This approach was not utilized

in this research due to the questionable flaws discovered within the values of the blue

band.  These issues will be described in the Results and Discussions chapter of this

thesis.  The multispectral data provided for this research did include captured Red-

Edge values.  There has been suggestion that the characteristics of this spectral band

may be beneficial to classifying open landscape vegetation (Strong 2017) (Schuster

2012).  While no vegetation index was built using this band, zonal statistics of this

band were used in the Random Forest classification all the same as the other 4 bands.

3.3 Random Forests Models

Most Random Forest Classification techniques seek to classify the land cover

of individual pixels such as (Svoboda 2022).  While this research did experiment

with unsupervised classification techniques of the NDVI, the resulting raster was

calculated for its zonal statistics per field to be used in as predictors in a Random

Forest Model.

This research would like to agree with Zhao in that elevation is the most

critical feature for the classification of grasslands (Zhao 2022).  However, elevation

was not included in any Random Forest Model constructed for this research due to

the inability to confirm the continuity of a vertical datum across the three imagery

sites.  To include some bit of topographic data into the classification attempt, slope

was calculated as a method of normalizing the surface elevations.

The number of trees (ntree) parameter within the random forest algorithm

was set to 1000 across all models.  Xu scaled this parameter to the “relatively high

value of 500” until the smallest OOB error was achieved (Xu 2019).  This method

was also applied with this research.  The mtry parameter was set to default (square

root of number of predictors) as recommended by the ranger packet documentation

(Wright 2021).
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Chapter 4

Characteristics of the Subject Site

The Aran Islands are a chain of three islands located off the west coast of

Ireland.  Across Galway Bay to the NE is County Galway, and directly east is located

The Burren in County Clare.  The three islands named Inis Oírr, Inis Meáin, and our

subject site Inis Mór, are defined by rare Karst limestone landscapes and orchid rich

calcareous semi-natural grasslands (Colgan 1893). The islands also host the

southerly limit of the geographic range of the rare machair habitat in Europe (Bassett

1985). These habitat types have developed a dependency on agricultural

management. Threatened by agricultural polarization (abandonment ----

intensification), conservationists in The Burren and The Aran Islands have opted for

a subsidy scheme that provides farmers with payment for corrective action and

habitat maintenance. The efforts have changed faces through different EU subsidy

programs, but their purposes have always remained the same.

The limestone geology was formed during the Carboniferous, on the

bottom of the tropical sea (Self 1998).  The islands share the same geological history

as the Burren, which Drew titles “the finest example of a karstic landscape in

Ireland” (Drew 1997).  Despite its rugged exterior, the Islands are very much so an

agrarian landscape.  Domesticated grazing animals have been present since

expansive clearing occurred in the Mesolithic-Neolithic transition (Molloy 2004).

Since this time, the prospering grasslands and flora species developed a strong

dependency on constant grazing levels.

Many of these rarities and beauties

present in the cultural landscape have

made the islands a target of

conservationists and tourists.

Figure 21. SE corner of Inis Mór, located off
subject site
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Chapter 5

Methodology

5.1 Data

Caomhnú Árann employed the services of GeoAerospace Ltd. to conduct a

remote survey of three adjacent sites on Inis Mór.  The sites were flown on June 28th

& 29th, 2021 with a DJI Phantom 4 Multispectral UAV and output rasters were ortho

rectified by a built in RTK GPS.  The DJI Phantom 4 Multispectral UAV utilizes

photogrammetry to map the horizontal and vertical coordinates, and produce the

output products (point cloud, DEM, and 5 band Orthomosaic).  The band names and

their spectral scale acquired by this drone survey are as follows: Blue (B): 450 nm ±

16 nm; Green (G): 560 nm ± 16 nm; Red (R): 650 nm ± 16 nm; Red edge (RE): 730

nm ± 16 nm; Near-infrared (NIR): 840 nm ± 26 nm.  The drone was flown at 120m

above ground level for each flight.  The vertical datum references the OSGM 1.5

Model and elevation values are in ellipsoidal height (Foyle 2022).

The three sites known colloquially as Mór 1,2, & 3 were flown at separate

times across June 28th and 29th, and do not geographically overlap at all. The sites

are numbered in counterclockwise order starting from the small NW site. The order

in which the editing of the shapefile was conducted corresponding to their respective

sizes: Mór 2, Mór 3, and finally Mór 1.  Editing procedures were kept constant

across the entirety of the data. Appendix B shows the geographic limits of all

provided raster and vector data.

Preparation for data analysis began by creating analytical rasters and editing

the provided shapefile.  GeoAerospace provided the orthorectified 5 band imagery

and a DEM, and Caomhnú Árann provided the field data shapefile hereon titled

“LPIS Field Data”. The LPIS Field Data shapefile was edited so that polygons were

topologically flush with neighbors where true and were most accurately representing

the field walls visualized in the remote sensing imagery.
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5.2 Remote Sensing Data Preparation

Various tools were needed to acquire the desired input predictors and manage

the data to be processable. Every individual band was extracted as a lyr. file and then

exported as geotiffs.  An issue was noticed early that the areas surrounding the extent

of raster data which should be “noData” were in fact valuing as 0.  This was handled

by using a Con expression in the raster calculator with all five individual bands as

input rasters.  The resulting raster was one which valued all pixels possessing a value

of 0 in all five individual bands from the multispectral imagery as 1.  Upon this

processing, it was discovered that .002 % of the data area was in fact containing no

data from the drone flight.  This is a result of a lack of ambient light penetrating

shadowed areas on the drone flight path, and thus the drone camera detected no light

coming back.  The uncovered area was considered insignificant due to small

coverage.

The output raster from the Con expression was then used as the conditional

raster in a SetNull expression with each of the five multispectral bands being used as

constants.  This resulted in five individual single band rasters representing the five

spectral ranges, valuing as NoData instead of 0 surrounding the data extents. The

five individual bands were combined back together using the “Image Analysis-

Composite Bands” feature in ArcMap.  The RGB imagery now valued all pixels

outside the true data extent as NoData.  This data management was necessary in

order to accurately calculate an NDVI. The DEM provided by GeoAerospace was

already satisfactory in this regard. A raster representing slope in degree was created

from the DEM.

The NDVI was created with the following equation (Red-NIR/Red+NIR)

(Sun 2014).  The Red Band was the third band provided by GeoAerospace with a

spectral range of 650 nm ± 16 nm, and the Near-Infrared Band was the fifth band

with a resolution of 840 nm ± 26 nm.  AN NDVI raster was provided for this thesis

research by GeoAerospace but was not used in further analysis.  It was however

compared to the NDVI created as a part of this research.  Differences in the two data

sets were negligible to none.

To capture the distribution patterns of vegetated characteristics inherent with

each of the grazing scores, further analytical rasters derived from the NDVI were
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created. The NDVI was used as the input raster in 3x3 rectangular focal statistics.

This operation was run for the following statistical types resulting in four new

rasters: Mean, Standard Deviation, Percentile, and Range. The NDVI was also used

as the input raster for operating a smoothing low pass filter and edge-enhancing high

pass filter.

5.3 LPIS Data Preparation

The LPIS is the cadaster database used by DAFM to manage payments to

their area-based payment schemes. The current system is 25 years old and the newly

introduced system created in 2019 has not been mainstreamed in the Aran Islands’

County Galway (DAFM) (LPIS 2019). This may explain to the crudeness of the

geographic accuracy and topological inconsistency in the provided shapefile.

Appendix C shows the manual transformation of the LPIS Field Data polygons done

for this thesis. The goal for this editing procedure was that the limits of each

polygon were placed in the center of the field wall they corresponded to, that

adjacent fields were flush to each other where they were supposed to be, and no two

polygons would overlap.

Decisions about the “true” location of polygons vertices were made using

best judgment, as many field walls are obvious demarcations of parcel limits.  The

easiest fields to delineate were those whose borders were demarcated by well-

managed field walls or by roads, as seen in Appendix C. Some characteristics of

difficult delineations include fields whose rear boundary was defined by severe slope

and large irregular limestone slabs, or residential lots that staged agricultural

equipment around its perimeter. An example of some unobvious field boundaries can

be seen in Appendix C. Extreme conservatism extra care was used in judging the

perimeter of these parcels by retaining as much of the original geometry as possible.

To make accurate edits, but not get overwhelmed by the intricacies of field wall

pivots, the data was usually scaled between 150 – 250:1m.  Vertices were always

placed on the best approximation of the center of field walls. The polygons were

displayed with a degree of transparency and proper symbology to ease in the

visualization of the rasters they were to be corresponding to. In ArcMap, the end

vertices of adjacent fields would be snapped together, and then the edge that they
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were supposed to share was snapped together using topology tools.  The resulting

shared edge would be edited together, again using tools from the same topology

toolbox. Keyboard shortcuts were created in ArcMap to speed up the editing

workflow.  The topology tool was used upon completion of each site and then upon

completion of all sites to scan for any polygons that were not flush as they were

meant to be. Where polygons extended past the limits of the remote sensing data,

vertices were snapped at the intersection of their “true” location on field walls and

the limit of the raster. No polygon edge was edited outside of the geographic limit of

raster information. It should be noted that the metric for field area was recalculated

after the editing procedure of the LPIS Field Data Shapefile. This shapefile has been

shared with Caomhnú Árann to aid in any future spatial analysis done on Inis Mór.

5.4 Predictors

The final data frame used for the “Large Model” and the Principal

Component Analysis included 317 observations of 48 variables.  The variables

chosen source from the Individual Bands, NDVI, NDVI derived rasters, DEM, and

the LPIS Field Data. Mean, Range, and SD Zonal Statistics were calculated amongst

each field polygon for the NDVI and its derivative rasters, Mean, Median, Range,

and SD for the individual bands, Mean, Range, SD, Min, and Max for the Slope

raster, and Area for each polygon was also calculated. Caomhnú Árann provided a

shapefile containing 369 observations.  3 of these observations were removed

because they were entirely outside of the extent of remote sensing data, and 49 other

observations were removed because they met an arbitrary threshold of percent

coverage of remote sensing data chosen for this thesis.  Fields whose area was not at

least 80% covered by the remote sensing data were removed from the subsequent

statistical analysis.

Table 3. List of predictors and their source data
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The LPIS Field Data also included a code representing farm ownership.

relationship between field size and score but averaged per farmer.  This visualization

shows that there is not much variability in the case from farmer to farmer and that the

performance of an individual farmer will not affect the classification model. For this

reason, Farm Code was excluded from the final data frame. Farms are scattered as

can be seen in Appendix D. It shows the dispersion of the 10 farmers with the

largest number of separate holdings.  Individual farmers have a diverse landscape

character across their fields and typically perform across the scoring system

spectrum.

Figure 22. Relationship between area and grazing score averaged per farmer

5.5 Exploratory Analysis

Exploratory analysis was done by making Box Plots of the area of LPIS farm

units, and the zonal mean and standard deviation for each of the input rasters. These

variables were taken from the data frame shown in table 3. The data was

summarized using the field scores as a case field. The input rasters were created

ArcMap 10.8.1 for Desktop.  The accompanying boxplots and all data analysis in this

thesis were done in R studio using the programming language R. Variable width

displays the width of each candle as they represent the percentage of observations
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There were 35 unique farm codes representing farm ownership. Figure 22 shows the

from the multispectral imagery and the zonal statistic variables were created using



and the color of each candle matches the symbology used for each grazing group

across the entirety of this thesis.

5.5a Correlation Matrix

Due to the nature of the input rasters, a significant level of collinearity was

expected. A correlation matrix was constructed to observe this in preparation for

model refinement.  The actual variables which constitute the data frame are zonal

statistics calculated in GIS for each field polygon. The correlation matrix was built

using the corrplot library in R.

5.5b Principal Component Analysis (PCA)

Multi-collinearity of input variables can make the interpretability of variable

importance in classification models quite difficult.  An important goal of this thesis is

not only to attempt classification but tell Caomhnú Árann what inputs are relevant in

future remote sensing surveys.  A Principal Component Analysis helped achieve this

goal.  All input data shown in table 3 was also used in a Principal Component

Analysis.

5.6 Iso-Cluster Unsupervised Classification

Because Random Forest is a supervised classification technique, this thesis

hoped to diversify its contribution to Caomhnú Árann’s efforts by also including an

unsupervised classification technique. The unsupervised classification method used

was Iso-Cluster Unsupervised Classification.  This method uses an isodata clustering

algorithm to determine the characteristics of the natural groupings of cells

(Lemenkova 2021).  This operation would be used to create a 3 class raster, 5 class

raster, and 10 class raster.  The 3 class raster was classified using only the NDVI as

an input raster, while the 5-class and 10-class rasters were constructed using the

NDVI and Slope as input rasters.  Default values for this unsupervised classification

tool in ArcMap were used. These include the number of iterations of the clustering

process to run (20), the minimum number of cells in a valid class (20), the interval to

be used for sampling (10).  No signature file was created in ArcMap because the

supervised classification was to be done in R using the Random Forest Model.
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5.7 Random Forest Classification

The decision to build a random forest model was made for its ability to

classify ordinal data and ease of construction and understanding. Random Forest is a

common method for supervised classification.  These models are a defined number

of decision trees that randomly generate vectors from the input data frame for each

tree. The most popular result for each observation across every tree elects its

predicted class.

5.7a PCA Random Forest Model

Principal component analyses plot input variables in as many dimensions as there are

input variables, and project the data onto new components.  The result will provide

you with as many components as you provided input variables, but with a

satisfactory coverage of explained variance in fewer variables. The new components

will reflect the same dataset, lessen collinearity present in the original dataset, and

decrease the number of variables in any further modeling.  In the case of this thesis,

the 47 variables which built the large random forest model were transformed,

resulting in 47 components. The first ten components were selected and bound to the

original observations, and used as predictors in

All parameter settings remained constant across all six Random Forest

Models, but mtry, which stands for the number of predictors from which a best split

is chosen in each decision. The default value for mtry in the ranger package is the

(rounded down) square root of the number variables in the model.  This default value

was used in each model. For this model, with 10 input variables in total, the mtry

value is 3. The minimum size for terminal nodes in this and all Random Forest

Models in this thesis research is 1.  This is recommended for classification models in

the documentation published for the R package Ranger (Wright 2021).

5.7b Large Model

The largest Random Forest model built in the effort of this research, hereon

titled “Large Model”, was constructed with every input variable used in the Principal

Component Analysis. . For this model, with 47 input variables in total, the mtry

value is 6.
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5.7c Small Model

The variables chosen for the more selective smaller model were derived from

the original data set.  There were no zonal statistics chosen from the same input

raster and all variables chosen possessed a level of variable importance in the “Large

Model” greater than the median. The input variables can be seen below in table 4.

The purpose of this smaller model was to evaluate if the variables with the

greatest variable importance in the “Large Model” could construct a classification

model with better prediction accuracy.  The goal of this research is to give Caomhnú

Árann the most information possible.  Analyzing results from random forest models

with different inputs will achieve this goal. For this model, with 12 input variables in

total, the mtry value is 3.

5.7d Percent Area of Unsupervised Classes – Random Forest Models

The percent area of each of each class in the resulting rasters was calculated

per LPIS field unit.  The method for doing so included rasterizing the LPIS Field

Data and setting the pixel size to match that of the classification raster, and then

using the “Tabulate Area” function in GIS.  To assure proper calculation of area %,

the sum of the area of the classes present in each polygon was used as the

denominator, in contrast, to simply using the total area of the polygon itself. The

resulting variables which were used in Random Forest Classification were % Class 1,

% Class 2, … % Class 10 of each LPIS field unit. For these models, with 1, 5, and

10 input variables, the mtry values were 1, 2, and 3.

Table 4. List of predictors and their source data for smaller selective model
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Chapter 6

Results

6.1 Exploratory Analysis

As hypothesized, NDVI was significant to the grazing score of

individual fields. Fields scored 5 possessed a higher standard deviation but a lower

mean of NDVI values across a single field. This thesis also paid attention to the

diversity of green candles across the five grazing scores but could not identify any

sign that green values are highest in mixed grasslands (He 2006).

Figure 23. Slope – Zonal Mean Figure 24. Slope – Zonal SD

Figure 25. NDVI – Zonal Mean Figure 26. NDVI – Zonal SD
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Figure 27. Field Area

Figure 28. Blue – Zonal Mean Figure 29. Blue – Zonal SD

Figure 30. Green – Zonal Mean Figure 31. Green – Zonal SD

Figure 32. Red – Zonal Mean Figure 33. Red – Zonal SD
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The group of fields scored 5 has the highest mean Standard Deviation of

NDVI values as well as the tightest range.  While the group mean of mean NDVI

values shows no clear pattern, the Standard Deviation and Range of these values for

the group of fields scored 3 does match with the hypothesis of this thesis. The mean

values for slope across the 5 groups also matches the geographic distribution of field

scores across the subject site. There is a general directional trend for the mean

geographic center of each score group as shown in Appendix B.  Due to the

concentration of samples in the NE corner of the subject site, there is a general sway

of the mean centers towards that corner, but most promising is the obvious sway of

mean centers from 5-1 moving in a northerly direction towards the coast. The

winterage, which is mostly made up of 5s and 4s, is located on the high flat plateau

in the central belly of the island.  Most of the lower-scored fields made up of

improved land are located on the northern sloping plain up to the coast. These

results match the general characteristics of these score groups.

Figure 34. Red Edge - Mean Figure 35. Red Edge - SD

Figure 36. Near-Infrared – Zonal Mean Figure 37. Near-Infrared – Zonal SD
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Figures 38 and 39 display the box plot for the zonal statistics of the raster

output from the Mean Focal Statistics for the NDVI. These results are very close to

those of the box plots for the original NDVI.  One can expect these two data sets to

be highly correlated. The remainder of the exploratory box plots of predictors can be

found in the appendix.

6.2 Correlation Matrix

The results from the Correlation Matrix proved the high collinearity of input

variables. Zonal means for NDVI derived variables had a strong positive correlation

with other zonal means from the same derivation and a strong negative correlation

with zonal Standard Deviation from NDVI sourced variables.  Slope and Area were

uniquely sourced and thus showed the relatively small correlation coefficients

expected of them.  Amongst variables sourced from dissimilar rasters, the highest

level of collinearity was between variables derived from the Red band and the zonal

Mean and Standard Deviation of NDVI sourced rasters.  This does not come as a

surprise as the NDVI is calculated from the Red Band.  See Figure 39 for the

Correlation Matrix.  These results came into consideration when limiting the number

of inputs into a smaller random forest model.

Figure 38. Focal Mean NDVI – Zonal Mean Figure 39. Focal Mean NDVI - Zonal SD
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6.3 Principal Component Analysis

Figure 40. Correlation Matrix of all input variables

Figure 41. Scree plot of explained variance per component
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The resulting scree plot, which shows the percentage of explained variance in

each component, can be seen in figure 41.  This displays the percentage of explained

variance projected onto each of the first ten components. The cumulative proportion

of variance present in the first 10 components is 94.151 %.  This thesis was always

going to be satisfied with a stopping point of 90% cumulative proportion of variance

and the 10th component also satisfies the Guttman-Kaiser criterion which is to

analyze components that have an eigenvalue greater than 1 (Jackson 1993) (Jackson

2003).  The overall goal of the principal component analysis was to remove

collinearity in the data, discover which variables were most important, and provide

an alternative to a large random forest model built by an overwhelming data frame.

The ten principles were bound to the source data and used as predictors in a Random

Forest Classification model.

Figure 42. Contribution of variables to dimension 1
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the first two component dimensions can be seen in  .

on percentage of explained variance within

 Figures 42 and 43.



Figure 43. Contribution of variables to dimension 2

Figure 44. Bi-Plot of principal component scores and variable loadings
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The Biplot (figure 45) output from the PCA tells a lot about the input

variables’ contribution and variability exhibited in the first two components.

Figure 45. Loading plot of first two components
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Additionally, there is evidence pointing to which variables are most relevant to

specific grazing scores.  The variability of variables derived from the individual

bands of the multispectral imagery appears to be represented very well in the first

two components, and their contribution to the first component specifically is visible

by its easterly orientation on the x-axis.  In general, the variability from remote

sensing imagery (Individual Bands and the derived NDVI) is expressed well in the

first two components in contrast to field area and variables derived from the terrain

slope (See figure 45).  Variables derived from slope do appear to have astrong 

negative loading on component 4 as seen in figure 46.  Clusteringamongst grazing 

scores is not obvious in the biplot of the first two components, butperhaps the tight

ellipses of the score 5 observations can hint at success in the abilityto predict these 

farms in the random forest model using the first two components.



6.4 Iso-Cluster Unsupervised Classification

This section shows the percent area of each class from the unsupervised

classification rasters per LPIS field unit averaged per each grazing score group.

6.4a 3 Class

Using intuitive observation of NDVI values on the subject site, it appeared

that the degree to which the surface was vegetated could be classified into three

groups. These hypothetical three groups are non-vegetated surface (e.g. limestone,

gravel drives, developed areas), intensively grazed grasslands and semi-natural

priority habitat. Upon initial observation of the resulting raster, the Iso-Cluster

Unsupervised Classification appeared to agree with the hypothesis.

Figure 46. Loading plot of third and fourth components
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6.4b 5 Class

The 5 Class unsupervised classification raster was built to match the 5

grazing scores used by Caomhnú Árann.  The Iso-Cluster Unsupervised

Classification tool in ArcMap was unable to cluster 5 classes that satisfied the

minimum number of pixels threshold of 20 with the NDVI as an alone input raster.

So in turn, this unsupervised classification was built using the NDVI and Slope

Raster.  The bar plot in figure 48 displays the average tabulated area of each class

within each grazing score group. The biggest outliers in this data visualization are

the relative presences of Class 1 within Grazing Score groups one and five.

The Random Forest Model built with this input data included the original 317

observations of the newly created 5 variables.  These variables were % Class 1 - %

Class 5. For this model, with 5 input variables in total, the mtry value is 2.  The

minimum size for terminal nodes in this and all Random Forest Models in this thesis

research is 1.  The purpose of this model built with the tabulated areas of the

Figure 47. Average percent coverage of each classification class per grazing score
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unsupervised classification was to expose the Random Forest Classification to a

different representation of the input data.

6.4c 10 Class

The 10 Class unsupervised classification raster was built to provide an

extreme case of unsupervised classification.  The Iso-Cluster Unsupervised

Classification tool in ArcMap was unable to cluster 10 classes that satisfied the

minimum number of pixels threshold of 20 with the NDVI as an alone input raster.

So in turn, this unsupervised classification was built using the NDVI and Slope

Raster, just the same as the 5 Class unsupervised raster.  The bar plot in figure 49

displays the average tabulated area of each class within each grazing score group.

The biggest outliers in this data visualization are the average relative presences of

Classes 1, 2, & 3 fields scored five and one.  Fields scored five on average also

display a higher percent presence of class 5, 6, 7, & 8.  The distinction between

Grazing score groups one and five shows potential for this data to have success in the

Random Forest Classification.

Figure 48. Average percent coverage of each classification class per grazing score
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6.5 Random Forest Classification

Amongst the 6 supervised classification methods used, the model built from

the first 10 dimensions of the Principal Component Analysis proved to be the most

successful in predicting the grazing scores. It also possessed the highest Balanced

Accuracy of any single class (class 5). This chapter will include detail the results of

the confusion matrix and variable importance for each Random Forest Model. All

confusion matrices shown in this chapter were constructed using the caret package

(Kuhn 2022) in R and variable importance bar plots were built using the ggplot2

package in R.

Figure 49. Average percent coverage of each classification class per grazing score
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6.5a PCA Random Forest Model

This model possessed the

lowest OOB prediction error % and

highest balanced accuracy for any

individual Grazing Score class

amongst the 6 random forest models.

While its overall predicted accuracy

was only .5489, its balanced accuracy

for fields scored five was .8401.  This

may be due to the prevalence of Class

Five amongst the data set.  The same

can also be said about Class Two.

Classes Three and Four had

remarkably low Sensitivity across all

models. The low sensitivity of

Classes Three and Four could be explained by the landscape characteristics of these

classes.  It should be noted although the grazing scores are ordinally ranked, they can

not be considered interval.  The grazing score has been designed to fit the specific

Table 5. PCA RF Model Confusion Matrix

Figure 50. Variable Importance of PCA RF predictors
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landscape phenomenon on the island.  Threes and Fours have the potential to be

Fives if they were grazed properly, and it is likely that they often exhibit similar

mosaics of exposed limestone, thus resulting in similar NDVI values. In this

Random Forest Model, 55.32% of the referenced “Threes” and 23.81% of the

referenced “Fours” were predicted to be scored a Two.  In line with this rhetoric is

the percentage of Referenced Threes and Fours being predicted as having been

scored Five (Three – 21.28% and Four-42.86%).  In fact, all results in each of the 6

confusion matrices are comparable relative to themselves.

The PCA-built Random Forest returned some puzzling results in the form of

variable importance as seen in figure 50. Most of the variability within the data set

was projected onto the initial components, but we see a strong amount of variable

importance within the random forest model from Principal Component 6.  Figure 51

shows the constitution of the Dimensions 1 & 6 when plotted together.  All variables

showing a strong contribution also possess a strong positive loading on Dimension 1.

The variable importance in the small and large random forest models will provide

more insight into relevant data.

Figure 51. Loading plot of first and sixth components
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6.5b Large Random Forest Model

The large model showed

comparable ratios between the

balanced accuracy of each of the 5

classes. And once again, incredibly

low false or true prediction of classes

3 and 4.  The results from the

Correlation Matrix show the high

collinearity between multiple

variables within the original data set

used to build the Large Model.  By

analyzing the variable importance of

this model (figure 52) and the

contribution of variables to the

principal components, a smaller more

selective model should yield a higher

prediction accuracy. The dominating variable importance of variables derived from

the Blue band is of concern because of issues with the data discussed in chapter XX.

Table 6. Large Model Confusion Matrix

Figure 52. Variable Importance of Large Model predictors
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6.5c Small Model

The small model showed comparable

ratios between the balanced accuracy

of each of the 5 classes.  And the

lowest false or true prediction of

classes 3 and 4.  By analyzing the

variable importance of this model

(figure 53) the only observable trend

is the low variable importance of

variables representing the Standard

Deviation zonal statistic.  This model

may have a slightly higher overall

prediction accuracy than the Large

Model but it is still not conclusive.

Table 7. Small Model Confusion Matrix

Figure 53. Variable Importance of Small Model predictors
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6.5d Tabulated Area of Unsupervised Classification Rasters

6.5d.1 3 Class Model

The Random Forest Model

built using the tabulated area of the 3

class Iso-Cluster Unsupervised

Classification raster produced the

lowest prediction accuracy of all 6

models.  It performed so poorly that

the Balanced Accuracy of Class 2 and

Class 5 which performed moderately

well in the previous 3 models are

nearly on par with the balanced

accuracy of the other three classes.

Noticeable is the greater number of

predictions of Class 3 and 4 compared

to the other models.  This is also true

in the Random Forest Model built using the tabulated area of the 5 class Iso-Cluster

Unsupervised Classification raster. Similar to the results of the previous models, a

plurality of the fields referenced as 3 were predicted as a 2, and a plurality of the

fields referenced as 4 were predicted as a 5.

Table 8. 3 Class tab. area RF Confusion Matrix
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6.5d.2 5 & 10 Class Models

The performance of the model built using the 10 class Iso-Cluster

Unsupervised Classification raster more closely resembled the results of the PCA,

Large, and Small models than the other Iso-Cluster Unsupervised classification

models. See figures XX for the confusion matrices for the 5 and 10 class models.

Figure 54. Variable Importance of 3 class RF model

Table 9. 5 Class tab. area RF Confusion Matrix Table 10. 10 Class tab. area RF Confusion Matrix
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Figure 55. Variable Importance of 5 class RF model

Figure 56. Variable Importance of 10 class RF model
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Chapter 7

Discussion

Another issue with the provided multispectral data was the significantly low

values from the Blue band in the site known as Mór 3 (NE site).  Due to the limited

time and resources associated with this research, and the difficulty of communicating

by email, this thesis cannot provide an answer for this anomaly.  It is for this reason,

Table 11. Statistics of multispectral bands per site
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Upon investigation of the input data, some flaws were discovered. Across all

sites, there appears to be a striping issue.  This can be a result of the sun’s position in

the sky, the chosen gimble angle, or the cloud cover at the time of the survey.  The

original images acquired by GeoAerospace were not provided for this thesis and that

limited the ability to troubleshoot this issue.  The result, however, was an

Orthomosaic with 30m wide stripping running north-south.  The striping is realized

by differentiating pixel values for otherwise similar objects.  It can be visualized

quite well in the NDVI, where along gravel roads, one can witness NDVI value

jumping ≈ .4 every roughly 30 m.  This thesis suggests any future use of this data set

would first attempt to correct the atmospheric disturbances using a Fast Fourier

Transformation, Flat Field Correction, or Internal Average Relative Reflectance

displays the raster statistics for the multispectral imagery captured in each of the 3

sites.

(IARR) (Chen 2017) (Kokka 2019) (Ben-Dor 1994) (THOR). Table 11 below



however, that no variables sourced from the Blue band were included in the “Small”

model.  This research could have worked off of the theories outlined in Strong’s

paper much more, specifically the usefulness of the ENDVI index, if the values of

the Blue band were not in question.

This research differs from most grassland classification attempts in that it

attempted to classify pre-existing field units, often made up of multiple pastures, by a

pre-existing scoring structure.  Most classification attempts (Xu 2019) (Svoboda

2022) are at the pixel level, not polygon.
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While a supervised classification model such as a Random Forest was not

proven to accurately classify any grazing score, there was promise in the ability to

classify fields scored 2 and 5.  If the large sample size of these two groups is

affecting the model’s ability to classify these fields, then there is also promise in the

prospect of the model being more successful with a larger data set or perhaps

temporal data.  This thesis if anything, gives Caomhnú Árann a starting point for

their prospective remote sensing endeavors.

.

Page 45

Chapter 8
Conclusion



Bibliography

Reports

Browne, Amanda. (2020) “Should Farmers Score Their Own Fields in Results Based
Programmes?” NRN EIP-AGRI BLOG, EIP-AGRI,
https://www.caomhnuaranneip.ie/_files/ugd/0ca2f5_4e0a35e3e2ac45a690e3ffa
004bbc7fd.pdf?index=true.

Caomhnú Árann, Inis Oírr, Ireland, 2018, Caomhnú Árann Field scoring system for
assessing habitat condition,
https://www.caomhnuaranneip.ie/_files/ugd/0ca2f5_ed02b524086147bd898d8
02d2243e259.pdf?index=true.

Caomhnú Árann, Inis Oírr, Ireland, 2019, Caomhnú Árann EIP Project Annual
Report.

Caomhnú Árann, Inis Oírr, Ireland, 2020b, Newsletter Issue 3.
https://www.caomhnuaranneip.ie/_files/ugd/0ca2f5_6bb8b23674c24f2ead0204
3ca771c73c.pdf

GeoAerospace.(2019) n.d., Caomhnú Árann - Satellite Grazing Scores
Classification.

Kuhn, Max. “Caret: Classification and Regression Training.” Classification and
Regression Training, 11 Mar. 2022, https://cran.r-
project.org/web/packages/caret/caret.pdf.

Wright, Marvin N. “A Fast Implementation of Random Forests.” CRAN,
Comprehensive R Archive Network (CRAN), 14 July 2021, https://cran.r-
project.org/web/packages/ranger/.

Journals

Bassett, J. A., and T. G. F. Curtis. “The Nature and Occurrence of Sand-Dune
Machair in Ireland.” Proceedings of the Royal Irish Academy. Section B:
Biological, Geological, and Chemical Science, vol. 85B, Royal Irish Academy,
1985, pp. 1–20, http://www.jstor.org/stable/20494442.

Ben-Dor, E., and F. A. Kruse. “The Relationship Between the Size of Spatial Subsets
of GER 63 Channel Scanner Data and the Quality of the Internal Average
Relative Reflectance (IARR) Atmospheric Correction Technique.”
International Journal of Remote Sensing, vol. 15, no. 3, Feb. 1994, pp. 683–90,
https://doi.org/10.1080/01431169408954107.

Page 46



Chen, Yong, et al. “Stripe Noise Removal of Remote Sensing Images by Total
Variation Regularization and Group Sparsity Constraint.” Remote Sensing, vol.
9, no. 6, 2017, p. 559., https://doi.org/10.3390/rs9060559.

He, Yuhong & Guo, Xulin & Wilmshurst, John. (2006). “Studying mixed grassland
ecosystems I: Suitable hyperspectral vegetation indices.” Canadian Journal of
Remote Sensing. 32. 98-107. 10.5589/m06-009.

Jackson, Donald A. “Stopping Rules in Principal Components Analysis: A
Comparison of Heuristical and Statistical Approaches.” Ecology, vol. 74, no. 8,
Ecological Society of America, 1993, pp. 2204–14,
https://doi.org/10.2307/1939574.

López, J (2019), Drones for Conservation in Protected Areas: Present and
Future. Drones. 2019; 3(1):10. https://doi.org/10.3390/drones3010010

Kokka, Alexander, et al. “Flat-Field Calibration Method for Hyperspectral Frame
Cameras.” Metrologia, vol. 56, no. 5, 2019, p. 055001.,
https://doi.org/10.1088/1681-7575/ab3261.

Komárek, Jan, et al. “The Potential of Unmanned Aerial Systems: A Tool towards
Precision Classification of Hard-to-Distinguish Vegetation Types?”
International Journal of Applied Earth Observation and Geoinformation, vol.
71, 2018, pp. 9–19., https://doi.org/10.1016/j.jag.2018.05.003.

Lemenkova, Polina. “ISO Cluster Classifier by Arcgis for Unsupervised
Classification of the Landsat TM Image of Reykjavík.” Bulletin of Natural
Sciences Research, vol. 11, no. 1, 2021, pp. 29–37.,
https://doi.org/10.5937/bnsr11-30488.

McGurn, Patrick, and Bernard McKay (2020b). “Nature and Agriculture: A Future of
Divergence or Convergence?” Biology and Environment: Proceedings of the
Royal Irish Academy, vol. 120B, no. 2, Royal Irish Academy, 2020, pp. 83–90,
https://doi.org/10.3318/bioe.2020.12.

McGurn P. (2017), et al. “Semi-natural grasslands on the Aran Islands, Ireland:
ecologically rich, economically poor.” Grassland Science in Europe, vol. 22,
7-10 May 2017., pp. 197–199.

Molloy, Karen, and Michael O’Connell. “Holocene Vegetation and Land-Use
Dynamics in the Karstic Environment of Inis Oı́rr, Aran Islands, Western
Ireland: Pollen Analytical Evidence Evaluated in Light of the Archaeological
Record.” Quaternary International 113.1 (2004): 41–64. Web.

O’Rourke, Eileen. “Socio-Natural Interaction and Landscape Dynamics in the
Burren, Ireland.” Landscape and Urban Planning, vol. 70, no. 1-2, 2005, pp.
69–83., https://doi.org/10.1016/j.landurbplan.2003.10.015.

Page 47



Rensburg, Thomas & Kelley, Hugh & Yadav, Lava. (2009). “Farming for
Conservation of the Upland Landscape and Biodiversity in the Burren.”
National University of Ireland Galway, Department of Economics, Working
Papers.

Schuster, Christian, et al. (2012) “Testing the red edge channel for improving land-
use classifications based on high-resolution multi-spectral satellite
data.” International Journal of Remote Sensing, 33:17, 5583-
5599, DOI: 10.1080/01431161.2012.666812

Strong CJ, Burnside NG, Llewellyn D (2017) The potential of small-Unmanned
Aircraft Systems for the rapid detection of threatened unimproved grassland
communities using an Enhanced Normalized Difference Vegetation Index.
PLOS ONE 12(10): e0186193. https://doi.org/10.1371/journal.pone.0186193

Sun, Zheng-guo, et al. “Classification and Net Primary Productivity of the Southern
China's Grasslands Ecosystem Based on Improved Comprehensive and
Sequential Classification System (CSCS) Approach.” Journal of Integrative
Agriculture, vol. 13, no. 4, 2014, pp. 893–903., https://doi.org/10.1016/s2095-
3119(13)60415-3.

Svoboda, Jan, et al. “Random Forest Classification of Land Use, Land-Use Change
and Forestry (LULUCF) Using Sentinel-2 Data—A Case Study of Czechia.”
Remote Sensing, vol. 14, no. 5, 2022, https://doi.org/10.3390/rs14051189.

Taddia, Y., et al. “Using DJI Phantom 4 RTK Drone for Topographic Mapping of
Coastal Areas.” The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XLII-2/W13, 2019, pp. 625–630.,
https://doi.org/10.5194/isprs-archives-xlii-2-w13-625-2019.

Xu, Dawei et al. (2019) "The Classification of Grassland Types Based on Object-
Based Image Analysis with Multisource Data," Rangeland Ecology and
Management, 72(2), 318-326, (5 March 2019)

Y. Feng and J. Wang, "GPS RTK Performance Characteristics and
Analysis," Positioning, Vol. 1 No. 13, 2008, pp. -.

Zhao, Yifan, et al. “Classification of Zambian Grasslands Using Random Forest
Feature Importance Selection during the Optimal Phenological Period.”
Ecological Indicators, vol. 135, Feb. 2022, p. 108529,
https://doi.org/10.1016/j.ecolind.2021.108529.

Books

Colgan, Nathaniel. “Notes on the Flora of the Aran Islands.” The Irish Naturalist,
vol. 2, no. 3, Irish Naturalists’ Journal Ltd., 1893, pp. 75–78,
http://www.jstor.org/stable/25520348.

Page 48



Drew, D., 1997. The Burren, County Clare. In: Aalen, F.H.A., Whelan, K., Stout, M.
, Atlas of the Irish Rural Landscape. Cork University Press, Cork, pp. 287298.

Dunford, Brendan, and Sharon Parr. “Farming for Conservation in the Burren .”
Farming for Nature The Role of Results-Based Payments, Teagasc , Wexford,
Ireland, 2020, pp. 56–105.

Jackson, J. Edward. A User's Guide to Principal Components. Wiley-Interscience,
2003.

McGurn, Patrick. et al. “Farming for Conservation on the Aran Islands.” Farming for
Nature The Role of Results-Based Payments, Teagasc , Wexford, Ireland, 2020,
pp. 108–147.

Robinson, Tim. Stones of Aran: Pilgrimage. Faber and Faber, 2008.

Webpagess

Anonymous. “Caomhnú Árann Managing the Habitats of the Aran Islands to
Maximise Their Agricultural & Ecological Output.” EIP-AGRI - European
Commission, 28 Aug. 2019, https://ec.europa.eu/eip/agriculture/en/find-
connect/projects/caomhn%C3%BA-%C3%A1rann-managing-habitats-aran-
islands.

Self, C.A. (1998) “The Caves of the Aran Islands, County Galway, Ireland - UBSS.”
University of Bristol Spelaeological Society, “unpublished”
http://www.ubss.org.uk/resources/proceedings/vol21/UBSS_Proc_21_2_159-
173.pdf.

“Land Parcel Identification System (LPIS).” Government of Ireland, 23 Oct. 2019,
https://www.gov.ie/en/service/1eb4d-land-parcel-identification-system-lpis/.

LDP LLC. “LDP LLC.” ENDVI, https://maxmax.com/maincamerapage/remote-
sensing/enhanced-normalized-difference-vegetation-index.

“THOR Atmospheric Correction.” l3harrisgeospatial,
https://www.l3harrisgeospatial.com/docs/thoratmosphericcorrection.html.

Correspondence

Burnside, Niall G. Received by Patrick McGurn, Drone Technology NDVI, 7 Jan.
2020.

Fearghus Foyle. Received by Patrick McGurn, Edited Shapefile, 28 March 2022.

Page 49



Data

“© OpenStreetMap contributors.” “Counties - Shapefile(.Shp).”

Page 50





















Appendix J


	3class.pdf (p.1)
	5class.pdf (p.2)
	10class.pdf (p.3)
	farmowner.pdf (p.4)
	Field Edits.pdf (p.5)
	Field Scores.pdf (p.6)
	Locus.pdf (p.7)
	NDVI.pdf (p.8)
	Topo.pdf (p.9)

